

Connected Rates of Change - Edexcel Past Exam Questions MARK SCHEME

Question 1: Jan 06 Q7

(a)	$\frac{dV}{dr} = 4\pi r^2$	B1	(1)
(b)	Uses $\frac{dr}{dt} = \frac{dV}{dt} \cdot \frac{dr}{dV}$ in any form, $= \frac{1000}{4\pi r^2 (2t+1)^2}$	M1,A1	(2)

Question 2: Jan 06 Q7

Question Number	Scheme		Marks
(a)	From question, $\frac{dS}{dt} = 8$	$\frac{\mathrm{dS}}{\mathrm{dt}} = 8$	
	$S = 6x^2 \implies \frac{dS}{dx} = 12x$	$\frac{\mathrm{dS}}{\mathrm{dx}} = 12\mathrm{x}$	
	$\frac{dx}{dt} = \frac{dS}{dt} \div \frac{dS}{dx} = \frac{8}{\underline{12x}}; = \frac{\frac{2}{3}}{x} \implies (k = \frac{2}{3})$	Candidate's $\frac{dS}{dt} \div \frac{dS}{dx}$; $\frac{8}{12x}$	M1; <u>A1</u> oe
			[4]
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{dV}{dx} = 3x^2$ Candidate's $\frac{dV}{dx} \times \frac{dx}{dt}$; λx	B1
	$V = x^{3} \implies \frac{dV}{dx} = 3x^{2}$ $\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 3x^{2} \cdot \left(\frac{2}{3x}\right); = 2x$	Candidate's $\frac{dV}{dx} \times \frac{dx}{dt}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG	Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	A1
			[4]

Question 3: June 06 Q7

Question Number	Scheme		Marks
(a)	From question, $\frac{dS}{dt} = 8$	$\frac{\mathrm{dS}}{\mathrm{dt}} = 8$	B1
	$S = 6x^2 \implies \frac{dS}{dx} = 12x$	$\frac{\mathrm{dS}}{\mathrm{dx}} = 12\mathrm{x}$	B1
	$\frac{dx}{dt} = \frac{dS}{dt} \div \frac{dS}{dx} = \frac{8}{\underline{12x}}; = \frac{\frac{2}{3}}{x} \implies (k = \frac{2}{3})$	Candidate's $\frac{dS}{dt} \div \frac{dS}{dx}$; $\frac{8}{12x}$	M1; <u>A1</u> oe
			[4]
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{\mathrm{d}V}{\mathrm{d}x} = 3x^2$	B1
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 3x^2 \cdot \left(\frac{2}{3x}\right); = 2x$	Candidate's $\frac{dV}{dx} \times \frac{dx}{dt}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG	Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	A1 [4]
			[*]
Question Number	Scheme		Marks
Aliter (b) Way 2	$x = V^{\frac{1}{3}} \& S = 6x^2 \implies S = 6V^{\frac{2}{3}}$	$S = 6V^{\frac{2}{3}}$	В1√
Way 2	$\frac{dS}{dV} = 4V^{\frac{-1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	$\frac{dS}{dV} = 4V^{-\frac{1}{3}} \text{ or } \frac{dV}{dS} = \frac{1}{4}V^{\frac{1}{3}}$	B1
	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dV}{dS} = 8. \left(\frac{1}{4V^{\frac{1}{3}}}\right); = \frac{2}{V^{\frac{1}{3}}} = 2V^{\frac{1}{3}} \text{ AG}$	Candidate's $\frac{dS}{dt} \times \frac{dV}{dS}$; $2V^{\frac{1}{3}}$	M1; A1
		In ePEN, award Marks for Way 2 in the order they appear on this mark scheme.	
			[4]
Question Number	Scheme		Marks
Aliter (b)	similar to way 1. $V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{\mathrm{dV}}{\mathrm{dx}} = 3\mathrm{x}^2$	B1
Way 3	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dx}{dS} = 3x^2 \cdot 8 \cdot \left(\frac{1}{12x}\right); = 2x$	Candidate's $\frac{dV}{dx} \times \frac{dS}{dt} \times \frac{dx}{dS}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG	Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	

Question 4: June 08 Q3

Question Number	Scheme	Marks
(<i>a</i>)	From question, $\frac{dA}{dt} = 0.032$	B1
	$\left\{ A = \pi x^2 \implies \frac{\mathrm{d}A}{\mathrm{d}x} = \right\} 2\pi x$	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}4}{\mathrm{d}t} \div \frac{\mathrm{d}4}{\mathrm{d}x} = (0.032)\frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$	M1
	When $x = 2 \text{ cm}$, $\frac{dx}{dt} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479$ (cm s ⁻¹)	A1 cso (4)
<i>(b)</i>	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 15\pix^2$	B1 ft
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24x\right\}$	M1
	When $x = 2 \text{ cm}$, $\frac{dV}{dt} = 0.24(2) = 0.48 \text{ (cm}^3 \text{ s}^{-1}\text{)}$	A1 (4)
		(8 marks)

Connected Rate of Change

Question 5: Jan 09 Q5

Question Number	Schem	e	Marks
(a)	Similar triangles $\Rightarrow \frac{r}{h} = \frac{16}{24} \Rightarrow \frac{r}{3} = \frac{2h}{3}$	Uses similar triangles, ratios or trigonometry to find either one of these two expressions oe.	M1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{2h}{3}\right)^2 h = \frac{4\pi h^3}{27} \text{AG}$	Substitutes $r = \frac{2h}{3}$ into the formula for the volume of water <i>V</i> .	A1 (2)
(b)	From the question, $\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	$\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} = \frac{4\pih^2}{9}$	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} \text{ or } \frac{4\pih^2}{9}$	B1
	$\frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} = 8 \times \frac{9}{4\pi h^2} = \frac{18}{\pi h^2}$	Candidate's $\frac{dV}{dt} \div \frac{dV}{dh}$; (12 πh^2) 9 18	
		$\underbrace{8 \div \left(\frac{12\pi h^2}{27}\right)}_{27} \text{ or } \underbrace{8 \times \frac{9}{4\pi h^2}}_{4\pi h^2} \text{ or } \frac{18}{\pi h^2} \text{ oe}$	A1
	When $h = 12$, $\frac{dh}{dt} = \frac{18}{\underline{144\pi}} = \frac{1}{\underline{8\pi}}$	$\frac{18}{144\pi} \text{ or } \frac{1}{8\pi}$	A1 oe isw
	Note the answer must be a one term exact value. Note, also you can ignore subsequent working after $\frac{18}{144\pi}$.		(5)
			[7]

Question 6: Jan 10 Q6

Question Number	Scheme	Marks
	$\frac{\mathrm{d}A}{\mathrm{d}t} = 1.5$	B1
	$A = \pi r^2 \implies \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	B1
	When $A = 2$ $2 = \pi r^2 \implies r = \sqrt{\frac{2}{\pi}} (= 0.797884 \dots)$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$	
	$1.5 = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1.5}{2\pi\sqrt{\frac{2}{\pi}}} \approx 0.299$ awrt 0.299	A1
		[5

Question 7: June 11 Q3

Question Number	Scheme	Marks	
	(a) $\frac{dV}{dh} = \frac{1}{2}\pi h - \pi h^2$ or equivalent	- M1 A1	
	At $h = 0.1$, $\frac{dV}{dh} = \frac{1}{2}\pi (0.1) - \pi (0.1)^2 = 0.04\pi$ $\frac{\pi}{25}$	M1 A1 (4)	
	(b) $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi}{800} \times \frac{1}{\frac{1}{2}\pi h - \pi h^2} \qquad \text{or } \frac{\pi}{800} \div \text{ their (a)}$	M1	
	At $h = 0.1$, $\frac{dh}{dt} = \frac{\pi}{800} \times \frac{25}{\pi} = \frac{1}{32}$ awrt 0.031	(-)	
		[6]	