

Implicit Differentiation - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q2

Question Number	Scheme	Marks
	$2x + \left(2x\frac{dy}{dx} + 2y\right) - 6y\frac{dy}{dx} = 0$	M1 (A1) A1
	$\frac{dy}{dx} = 0 \implies x + y = 0 \qquad \text{or equivalent } $	M1
	Eliminating either variable and solving for at least one value of x or y. $y^2 - 2y^2 - 3y^2 + 16 = 0$ or the same equation in x	M1
	$y = \pm 2 \qquad \text{or } x = \pm 2$	A1
	(2,-2),(-2,2)	A1
	$\mathbf{y} = \mathbf{d} \mathbf{y} - \mathbf{x} + \mathbf{y}$	[7]
	Note: $\frac{dy}{dx} = \frac{x+y}{3y-x}$	
	Alternative (2.16)	
	$3y^2 - 2xy - (x^2 + 16) = 0$	
	$y = \frac{2x \pm \sqrt{(16x^2 + 192)}}{6}$	
	$\frac{dy}{dx} = \frac{1}{3} \pm \frac{1}{3} \cdot \frac{8x}{\sqrt{(16x^2 + 192)}}$	M1 A1± A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{8x}{\sqrt{\left(16x^2 + 192\right)}} = \pm 1$	M1
	$64x^2 = 16x^2 + 192$	
	$x = \pm 2$	M1 A1
	(2,-2),(-2,2)	A1
		[7]

Question 2: Jan 06 Q1

Question Number	Scheme	Mark	s
ř	Differentiates	М1	
	$6x + 8y \frac{dy}{dx} - 2,$	A1,	
	to obtain: $+(6x\frac{dy}{dx}+6y)=0$	+(B1)	
	$\left[\frac{dy}{dx} = \frac{2 - 6x - 6y}{6x + 8y}\right]$		
	Substitutes $x = 1$, $y = -2$ into expression involving $\frac{dy}{dx}$, to give $\frac{dy}{dx} = -\frac{8}{10}$	M1, A1	
	Uses line equation with numerical 'gradient' $y - (-2) = (\text{their gradient})(x - 1)$ or finds c and uses $y = (\text{their gradient}) x + "c"$	M1	
	To give $5y+4x+6=0$ (or equivalent = 0)	A1√	[7]

Question 3: June 06 Q1

Question Number	Scheme		Marks
	$\begin{cases} \frac{dy}{dx} \times \end{cases} = 6x - 4y \frac{dy}{dx} + 2 - 3 \frac{dy}{dx} = 0$ $\begin{cases} \frac{dy}{dx} = \frac{6x + 2}{4y + 3} \end{cases}$	Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $\pm 3 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.) Correct equation.	M1 A1
	$\left\{ \frac{dy}{dx} = \frac{6x + 2}{4y + 3} \right\}$	not necessarily required.	
	At $(0, 1)$, $\frac{dy}{dx} = \frac{0+2}{4+3} = \frac{2}{7}$	Substituting x = 0 & y = 1 into an equation involving $\frac{dy}{dx}$; to give $\frac{2}{7}$ or $\frac{-2}{-7}$	dM1; A1 cso
	Hence m(N) = $-\frac{7}{2}$ or $\frac{-1}{\frac{2}{7}}$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√oe.
	Either N : $y-1 = -\frac{7}{2}(x-0)$ or N : $y = -\frac{7}{2}x + 1$	y-1=m(x-0) with 'their tangent or normal gradient'; or uses $y=mx+1$ with 'their tangent or normal gradient';	M1;
	N: 7x + 2y - 2 = 0	Correct equation in the form $ax + by + c = 0$, where a, b and c are integers.	A1 oe cso
			7 marks

Question 4: Jan 07 Q5

Question Number	Scheme		Marks
(a)	$\sin x + \cos y = 0.5$ (eqn *)		
	$\left\{\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \times \right\} = \cos \mathbf{x} - \sin \mathbf{y} \frac{d\mathbf{y}}{d\mathbf{x}} = 0 \qquad (\text{eqn } \#)$	Differentiates implicitly to include $\pm \sin y \frac{dy}{dx} \ . \ (Ignore \left(\frac{dy}{dx} \ = \right).)$	M1
	$\frac{dy}{dx} = \frac{\cos x}{\sin y}$	$\frac{\cos x}{\sin y}$	A1 cso [2]
(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation.	М1√
	giving $X = -\frac{\pi}{2}$ or $X = \frac{\pi}{2}$	both $\underline{x = -\frac{\pi}{2}, \frac{\pi}{2}}$ or $\underline{x = \pm 90^{\circ}}$ or awrt $\underline{x = \pm 1.57}$ required here	A1
	When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$	Substitutes either their $X = \frac{\pi}{2}$ or $X = -\frac{\pi}{2}$ into eqn *	М1
	⇒ $\cos y = 1.5$ ⇒ y has no solutions ⇒ $\cos y = -0.5$ ⇒ $y = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$	Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{}$ or $\frac{-120^{\circ}}{}$ or awrt $\frac{-2.09}{}$ or awrt $\frac{2.09}{}$	A1
	In specified range $(x, y) = (\frac{\pi}{2}, \frac{2\pi}{3})$ and $(\frac{\pi}{2}, -\frac{2\pi}{3})$	Only exact coordinates of $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$	A1
		Do not award this mark if candidate states other coordinates inside	
		the required range.	[5]
			7 marks

Question 5: Jan 07 Q6

Question Number	Scheme		Ma	arks
	$y = 2^x = e^{x \ln 2}$			
(a) Way 1	$\frac{dy}{dx} = \ln 2. e^{x \ln 2}$	$\frac{dy}{dx} = \ln 2. e^{x \ln 2}$	M1	
Way 1	Hence $\frac{dy}{dx} = \ln 2 \cdot (2^x) = 2^x \ln 2$ AG	2 ^x ln2 AG	A1	
Aliter				[2]
(a)	$lny = ln(2^x)$ leads to $lny = x ln2$	Takes logs of both sides, then uses the power law of logarithms		
Way 2	$\frac{1}{y}\frac{dy}{dx} = \ln 2$	and differentiates implicitly to give $\frac{1}{y} \frac{dy}{dx} = \ln 2$	M1	
	Hence $\frac{dy}{dx} = y \ln 2 = 2^x \ln 2$ AG	2* ln2 AG	A1	cso [2]
(b)	$y = 2^{(x^2)}$ $\Rightarrow \frac{dy}{dx} = 2x. \ 2^{(x^2)}. \ln 2$	$\begin{array}{c} \text{Ax } 2^{(x^2)} \\ \text{2x. } 2^{(x^2)}.\text{In 2} \\ \text{or } 2x.y.\text{In 2 if } y \text{ is defined} \end{array}$	M1 A1	
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$	Substitutes $x = 2$ into their $\frac{dy}{dx}$ which is of the form $\pm k 2^{(x^2)}$ or Ax $2^{(x^2)}$	M1	
	$\frac{dy}{dx} = \frac{64 \ln 2}{1} = 44.3614$	64ln2 or awrt 44.4	A1	
				[4]
			6 m	arks

Question 6: Jan 08 Q5

Question Number	Scheme	0	Marks	5
(a)	$x^3 - 4y^2 = 12xy$ (eqn *)			
	$x = -8 \implies -512 - 4y^2 = 12(-8)y$ $-512 - 4y^2 = -96y$	Substitutes $x = -8$ (at least once) into * to obtain a three term quadratic in y . Condone the loss of = 0.	M1	
	$4y^2 - 96y + 512 = 0$ $y^2 - 24y + 128 = 0$			
	$(y-16)(y-8) = 0$ $y = \frac{24 \pm \sqrt{576 - 4(128)}}{2}$	An attempt to solve the quadratic in y by either factorising or by the formula or by completing the square.	dM1	
	y = 16 or $y = 8$.	Both $y = 16$ and $y = 8$. or $(-8, 8)$ and $(-8, 16)$.	A1]
(b)	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times\right\} 3x^2 - 8y \frac{dy}{dx}; = \left(\underline{12y + 12x \frac{dy}{dx}}\right)$	Differentiates implicitly to include either $\pm ky \frac{dv}{dx}$ or $12x \frac{dv}{dx}$. Ignore $\frac{dv}{dx} =$ Correct LHS equation; Correct application of product rule	M1 A1; (B1)	
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$	not necessarily required.		
	$(2.8, 8)$, $\frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{-3}$	Substitutes $x = -8$ and at least one of their y-values to attempt to find any one of $\frac{dy}{dx}$.	dM1	
	$(0.00, 16)$, $\frac{dy}{dy} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = 0$.	One gradient found.	A1	
	dx = 12(-8) + 8(16) = 32	Both gradients of $\underline{-3}$ and $\underline{0}$ correctly found.	A1 cso	[
			9 mark	5

Question Number	Scheme		Marks
Aliter (b) Way 2	$\left\{\frac{2 x}{x}\right\} 3x^2 \frac{dx}{dy} - 8y; = \left(\frac{12y \frac{dx}{dy} + 12x}{2}\right)$	Differentiates implicitly to include either $\pm kx^2 \frac{dx}{dy}$ or $12y \frac{dx}{dy}$. Ignore $\frac{dx}{dy} =$ Correct LHS equation Correct application of product rule	M1 A1; (B1)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$	not necessarily required.	
		Substitutes $x = -8$ and at least one of their y-values to attempt to find any one of $\frac{dy}{dx}$ or $\frac{dy}{dy}$. One gradient found. Both gradients of $\underline{-3}$ and $\underline{0}$ correctly found.	dM1 A1 A1 cso [6

Question Number	Scheme		Marks
Aliter (b) Way 3	$x^{3} - 4y^{2} = 12xy (\text{ eqn } *)$ $4y^{2} + 12xy - x^{3} = 0$ $y = \frac{-12x \pm \sqrt{144x^{2} - 4(4)(-x^{3})}}{8}$ $y = \frac{-12x \pm \sqrt{144x^{2} + 16x^{3}}}{8}$		
	$y = \frac{-12x \pm 4\sqrt{9x^2 + x^3}}{8}$ $y = -\frac{3}{2}x \pm \frac{1}{2}(9x^2 + x^3)^{\frac{1}{2}}$		
	$\frac{dy}{dx} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}}; \left(18x + 3x^2\right)$	A credible attempt to make y the subject and an attempt to differentiate either $-\frac{3}{2}x$ or $\frac{1}{2}(9x^2+x^3)^{\frac{1}{2}}$.	M1
	$\frac{dy}{dx} = -\frac{3}{2} \pm \frac{18x + 3x^2}{4(9x^2 + x^3)^{\frac{1}{2}}}$	$\frac{dy}{dx} = -\frac{3}{2} \pm k \left(9x^2 + x^3\right)^{-\frac{1}{2}} \left(g(x)\right)$ $\frac{dy}{dx} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}} ; \left(18x + 3x^2\right)$	
		Substitutes $x = -8$ find any one of $\frac{dy}{dx}$.	dM1
	$\therefore \frac{dy}{dx} = -\frac{3}{2} \pm \frac{3}{2} = -3, \underline{0}.$	One gradient correctly found. Both gradients of $\underline{-3}$ and $\underline{0}$ correctly found.	A1 A1 [6]

Question 7: June 08 Q4

Question Number	Scheme	Marks
(a)	$3x^2 - y^2 + xy = 4$ (eqn *)	
	$\left\{\frac{\cancel{X}\cancel{X}}{\cancel{X}\cancel{X}} \times \right\} \underline{6x - 2y \frac{dy}{dx}} + \left(\underline{y + x \frac{dy}{dx}}\right) = \underline{0}$	M1 B1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$	M1
	giving $-18x - 3y = 8x - 16y$	
	giving $13y = 26x$	M1
	Hence, $y = 2x \Rightarrow y - 2x = 0$	A1 cso (6)
(b)	At $P \& Q$, $y = 2x$. Substituting into eqn *	
	gives $3x^2 - (2x)^2 + x(2x) = 4$	M1
	Simplifying gives, $x^2 = 4 \Rightarrow \underline{x = \pm 2}$	A1
	$y = 2x \implies y = \pm 4$, hence coordinates are $(2,4)$ and $(-2,-4)$	A1 (3)
		(9 marks)

Question 8: Jan 09 Q1

Question Number	Scheme	Marks
(a)	C: $y^2 - 3y = x^3 + 8$ Differentiates implicitly to include $ \begin{cases} \frac{\partial y}{\partial x} \times \begin{cases} $	mpt to M1
	$(2y-3)\frac{dy}{dx} = 3x^2$ combine or factorise their $2y\frac{dy}{dx}$. Can be in	u.c
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2y - 3}$	$\frac{3x^2}{2y-3}$ A1 oe (4
(b)	$y=3 \Rightarrow 9-3(3)=x^3+8$ Substitutes $y=3$ is	nto C. M1
	$x^3 = -8 \Rightarrow \underline{x = -2}$ Only \underline{x}	=-2 A1
	$\frac{dy}{dx} = 4 \text{ from correct wo}$ $(-2,3) \Rightarrow \frac{dy}{dx} = \frac{3(4)}{6-3} \Rightarrow \frac{dy}{dx} = 4$ Also can be ft using their 'x' value and $y = 3$ $\text{correct part (a) of } \frac{dy}{dx} = \frac{3}{3}$	in the $\frac{3x^2}{2y-3}$ A1 $\sqrt{}$
	1(b) final A1 $\sqrt{\ }$. Note if the candidate inserts their x value and $y = 3$ into $\frac{dy}{dx} = \frac{3x^2}{2y - 3}$ then an answer of $\frac{dy}{dx}$ = their x^2 , may indicate a correct follow through.	. (3
		[7

Question 9: June 09 Q4

Question Number	Scheme	Marks	
Q (a)	$e^{-2x} \frac{dy}{dx} - 2y e^{-2x} = 2 + 2y \frac{dy}{dx}$ A1 correct RHS $\frac{d}{dx} \left(y e^{-2x} \right) = e^{-2x} \frac{dy}{dx} - 2y e^{-2x}$	M1 A1	
	$\left(e^{-2x} - 2y\right) \frac{dy}{dx} = 2 + 2y e^{-2x}$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 + 2y\mathrm{e}^{-2x}}{\mathrm{e}^{-2x} - 2y}$	A1	(5
(b)	At P, $\frac{dy}{dx} = \frac{2 + 2e^0}{e^0 - 2} = -4$ Using $mm' = -1$	М1	
	$m' = \frac{1}{4}$ $y - 1 = \frac{1}{4}(x - 0)$	M1	
	x-4y+4=0 or any integer multiple	A1	(4 [9
	Alternative for (a) differentiating implicitly with respect to y.		
	$e^{-2x} - 2y e^{-2x} \frac{dx}{dy} = 2 \frac{dx}{dy} + 2y$ A1 correct RHS $\frac{d}{dy} \left(y e^{-2x} \right) = e^{-2x} - 2y e^{-2x} \frac{dx}{dy}$	M1 A1	
	$(2+2ye^{-2x})\frac{dx}{dy} = e^{-2x} - 2y$	М1	
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\mathrm{e}^{-2x} - 2y}{2 + 2y\mathrm{e}^{-2x}}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 + 2y\mathrm{e}^{-2x}}{\mathrm{e}^{-2x} - 2y}$	A1	(5

Question 10: Jan 10 Q3

Question Number	Scheme	Marks	
	(a) $-2\sin 2x - 3\sin 3y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$		
	$\frac{dy}{dx} = -\frac{2\sin 2x}{3\sin 3y} \qquad \text{Accept } \frac{2\sin 2x}{-3\sin 3y}, \frac{-2\sin 2x}{3\sin 3y}$	A1 ((3)
	(b) At $x = \frac{\pi}{6}$, $\cos\left(\frac{2\pi}{6}\right) + \cos 3y = 1$	M1	
	$\cos 3y = \frac{1}{2}$	A1	
	$3y = \frac{\pi}{3} \Rightarrow y = \frac{\pi}{9}$ awrt 0.349	A1 ((3)
	(c) At $\left(\frac{\pi}{6}, \frac{\pi}{9}\right)$, $\frac{dy}{dx} = -\frac{2\sin 2\left(\frac{\pi}{6}\right)}{3\sin 3\left(\frac{\pi}{9}\right)} = -\frac{2\sin \frac{\pi}{3}}{3\sin \frac{\pi}{3}} = -\frac{2}{3}$	M1	
	$y - \frac{\pi}{9} = -\frac{2}{3} \left(x - \frac{\pi}{6} \right)$	M1	
	Leading to $6x + 9y - 2\pi = 0$		(3) [9]

Question 11: June 10 Q3

Question Number	Scheme	Marks	
	$\frac{d}{dx}(2^x) = \ln 2.2^x$ $\ln 2.2^x + 2y \frac{dy}{dx} = 2y + 2x \frac{dy}{dx}$	B1	
		M1 A1= A1	
	Substituting (3, 2) $8 \ln 2 + 4 \frac{dy}{dx} = 4 + 6 \frac{dy}{dx}$	M1	
	$\frac{dy}{dx} = 4 \ln 2 - 2$ Accept exact equivalents	M1 A1 (7)	
		ı	

Question 12: June 11 Q5

Question Number	Scheme			Marks	
		$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \dots$		B1	
		$\dots = 2 \ln x + 2x \left(\frac{1}{x}\right)$		M1 A1	
	At $x=2$,	$\ln y = 2(2) \ln 2$		M1	
	leading to	<i>y</i> = 16	Accept $y = e^{4\ln 2}$	A1	
L	At (2,16)	$\frac{1}{16} \frac{dy}{dx} = 2 \ln 2 + 2$	Ц	M1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 16\left(2 + 2\ln 2\right)$		A1	(7
		a			[7
	Alternative	$y = e^{2x \ln x}$ $\frac{d}{dx} (2x \ln x) = 2 \ln x + 2x \left(\frac{1}{x}\right)$		B1	
		$\frac{\mathrm{d}}{\mathrm{d}x}(2x\ln x) = 2\ln x + 2x\left(\frac{1}{x}\right)$		M1 A1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(2\ln x + 2x\left(\frac{1}{x}\right)\right)e^{2x\ln x}$		M1 A1	
	At $x=2$,	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2\ln 2 + 2)e^{4\ln 2}$		M1	
		$=16(2+2\ln 2)$		A1	(7