

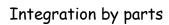
Integration by Parts - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 07 Q3

Question Number	Scheme	Marks
(a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dy}{dx} = \cos 2x \implies v = \frac{1}{2}\sin 2x \end{cases}$	
	Int = $\int x \cos 2x dx = \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x . 1 dx$ (see note below) Use of 'integration by parts' formula in the correct direction. Correct expression.	M1 A1
	$\sin 2x \rightarrow -\frac{1}{2}\cos 2x$ $= \frac{1}{2}x\sin 2x - \frac{1}{2}\left(-\frac{1}{2}\cos 2x\right) + c \qquad \text{or } \sin kx \rightarrow -\frac{1}{k}\cos kx$ $\text{with } k \neq 1, k > 0$	dM1
	$= \frac{1}{2}X\sin 2x + \frac{1}{4}\cos 2x + c$ Correct expression with +c	A1 [4]
(b)	$\int x \cos^2 x dx = \int x \left(\frac{\cos 2x + 1}{2}\right) dx$ Substitutes correctly for $\cos^2 x$ in the given integral	M1
	$= \frac{1}{2} \int x \cos 2x dx + \frac{1}{2} \int x dx$	
	$= \frac{1}{2} \left(\frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right); + \frac{1}{2} \int x dx$ $\frac{1}{2} (\text{their answer to (a)});$ or <u>underlined expression</u>	A1; √
	$= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 \ (+c)$ Completely correct expression with/without +c	A1 [3]
		7 marks
Notes:		<i></i>
(b)	Int = $\int x \cos 2x dx = \frac{1}{2} x \sin 2x \pm \int \frac{1}{2} \sin 2x \cdot 1 dx$ This is acceptable for M1	M1
	$\begin{cases} u = x & \Rightarrow \frac{dy}{dx} = 1 \\ \frac{dy}{dx} = \cos 2x \Rightarrow v = \lambda \sin 2x \end{cases}$	
	Int = $\int x \cos 2x dx = \lambda x \sin 2x \pm \int \lambda \sin 2x.1 dx$ This is also acceptable for M1	M1

Integration by parts

Aliter (b) Way 2	$\int x \cos^2 x dx = \int x \left(\frac{\cos 2x + 1}{2} \right) dx$	Substitutes correctly for cos² x in the given integral	M1
	$\begin{cases} U = X & \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \frac{1}{2}\cos 2x + \frac{1}{2} \Rightarrow V = \frac{1}{4}\sin 2x + \frac{1}{2}X \end{cases}$	$u = x$ and $\frac{dv}{dx} = \frac{1}{2}\cos 2x + \frac{1}{2}$	
	$= \frac{1}{4} x \sin 2x + \frac{1}{2} x^2 - \int \left(\frac{1}{4} \sin 2x + \frac{1}{2} x \right) dx$		
	$= \frac{\frac{1}{4}x\sin 2x}{+\frac{1}{2}x^2 + \frac{1}{8}\cos 2x} - \frac{1}{4}x^2 + c$	$\frac{1}{2}$ (their answer to (a)); or <u>underlined expression</u>	A1√
	$= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 \ (+c)$	Completely correct expression with/without +c	A1 [3]
Aliter (b) Way 3	$\int x \cos 2x dx = \int x (2 \cos^2 x - 1) dx$	Substitutes $\frac{\text{correctly}}{\text{for } \cos 2x}$ in $\int x \cos 2x dx$	M1
	$\Rightarrow 2\int x \cos^2 x dx - \int x dx = \frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x + c$		
	$\Rightarrow \int x \cos^2 x dx = \frac{1}{2} \left(\frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right) + \frac{1}{2} \int x dx$	$\frac{1}{2}$ (their answer to (a)); or <u>underlined expression</u>	A1; √
	$= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 (+c)$	Completely correct expression with/without +c	A1 [3]
			7 marks



Question 2: Jan 08 Q4

Question Number	Scheme		Mark	cs
(i)	$\int \ln\left(\frac{x}{2}\right) dx = \int 1.\ln\left(\frac{x}{2}\right) dx \implies \begin{cases} u = \ln\left(\frac{x}{2}\right) & \Rightarrow & \frac{du}{dx} = \frac{\frac{1}{2}}{\frac{x}{2}} = \frac{1}{x} \\ \frac{dv}{dx} = 1 & \Rightarrow & v = x \end{cases}$			
	$\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - \int x \cdot \frac{1}{x} dx$	Use of 'integration by parts' formula in the correct direction. Correct expression.	M1 A1	
	$=x\ln\left(\frac{x}{2}\right)-\int\underline{1}\mathrm{d}x$	An attempt to multiply x by a candidate's $\frac{a}{x}$ or $\frac{1}{bx}$ or $\frac{1}{x}$.	<u>dM1</u>	
	$=x\ln\left(\frac{x}{2}\right)-x+c$	Correct integration with $+c$	A1 aef	[4]
(ii)	$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x dx$ $\left[\text{NB: } \frac{\cos 2x = \pm 1 \pm 2 \sin^2 x}{2} \text{ gives } \sin^2 x = \frac{1 - \cos 2x}{2} \right]$ $= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{1 - \cos 2x}{2} \right) dx$	Consideration of double angle formula for $\sin^2 x$	M1	
	$= \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$	Integrating to give $\pm ax \pm b \sin 2x$; Correct result of anything equivalent to $\frac{1}{2}x - \frac{1}{4}\sin 2x$	dM1	
	$= \frac{1}{2} \left[\left(\frac{\pi}{2} - \frac{\sin(\pi)}{2} \right) - \left(\frac{\pi}{4} - \frac{\sin(\frac{\pi}{2})}{2} \right) \right]$ $= \frac{1}{2} \left[\left(\frac{\pi}{2} - 0 \right) - \left(\frac{\pi}{4} - \frac{1}{2} \right) \right]$	Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1	
	$= \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4}$	$\frac{\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{2}\right)}{2} \text{ or } \frac{\frac{\pi}{8}+\frac{1}{4}}{\frac{\pi}{4}}$ Candidate must collect their π term and constant term together for A1	A1 aef	[5]

Integration by parts

Question Number	Scheme	Marks
Aliter	$\int \ln\left(\frac{x}{2}\right) dx = \int (\ln x - \ln 2) dx = \int \ln x dx - \int \ln 2 dx$	
	$\int \ln x dx = \int 1 \cdot \ln x dx \implies \begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = 1 & \Rightarrow v = x \end{cases}$	
	$\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction.	M1
	$= x \ln x - x + c$ Correct integration of $\ln x$ with or without $+ c$	A1
	$\int \ln 2 dx = x \ln 2 + c$ Correct integration of $\ln 2$ with or without $+ c$	M1
	Hence, $\int \ln(\frac{x}{2}) dx = x \ln x - x - x \ln 2 + c$ Correct integration with $+ c$	Al aef

Question Number	Scheme		Marks
Aliter (ii) Way 2	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x . \sin x dx \text{and} I = \int \sin^2 x dx$ $\left\{ u = \sin x \Rightarrow \frac{du}{dx} = \cos x \right\}$		
	$\begin{cases} u = \sin x \implies \frac{du}{dx} = \cos x \\ \frac{dv}{dx} = \sin x \implies v = -\cos x \end{cases}$ $\therefore I = \left\{ -\sin x \cos x + \int \cos^2 x dx \right\}$	An attempt to use the correct by parts formula.	M1
	$I = \left\{-\sin x \cos x + \int (1 - \sin^2 x) dx\right\}$ $\int \sin x dx = \left\{-\sin x \cos x + \int 1 dx - \int \sin^2 x dx\right\}$ $2\int \sin^2 x dx = \left\{-\sin x \cos x + \int 1 dx\right\}$	F 4 11161	24
	$2\int \sin^2 x dx = \left\{-\sin x \cos x + x\right\}$	For the LHS becoming 2I	dM1
	$\int \sin^2 x dx = \left\{ -\frac{1}{2} \sin x \cos x + \frac{x}{2} \right\}$	Correct integration	A1
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx = \left[\left(-\frac{1}{2} \sin(\frac{\pi}{2}) \cos(\frac{\pi}{2}) + \frac{(\frac{\pi}{2})}{2} \right) - \left(-\frac{1}{2} \sin(\frac{\pi}{4}) \cos(\frac{\pi}{4}) + \frac{(\frac{\pi}{4})}{2} \right) \right]$ $= \left[\left(0 + \frac{\pi}{4} \right) - \left(-\frac{1}{4} + \frac{\pi}{8} \right) \right]$	Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1
	$=\frac{\pi}{\$}+\frac{1}{4}$	$\frac{\frac{1}{8}(\pi+2)}{6}$ or $\frac{\pi}{8}+\frac{1}{4}$ Candidate must collect their pi term and constant term together for A1	A1 aef [5]

Question 3: June 08 Q2

Question Number	Scheme	Marks
(a)	$\begin{cases} u = x & \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x & \Rightarrow v = e^x \end{cases}$ $\int xe^x dx = xe^x - \int e^x \cdot 1 dx$	
	$\int xe^x dx = xe^x - \int e^x .1 dx$ $= xe^x - \int e^x dx$	M1 A1
	$= x e^x - e^x (+ c)$	A1 (3)
(b)	$\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x & \Rightarrow v = e^x \end{cases}$ $\int x^2 e^x dx = x^2 e^x - \int e^x . 2x dx$	
	$\int x^2 e^x dx = x^2 e^x - \int e^x . 2x dx$ $= x^2 e^x - 2 \int x e^x dx$	M1 A1
	$= x^2 e^x - 2\left(x e^x - e^x\right) + c$	A1 (3)
		(6 marks)

Question 4: Jan 09 Q6

Question Number	Scheme	Marks
(a)	$\int \tan^2 x \ dx$	
	$\[NB : \underline{\sec^2 A} = 1 + \tan^4 A \text{ gives } \underline{\tan^4 A} = \sec^2 A - 1 \] $ The correct <u>under</u>	lined identity. M1 oe
	$-\int \sec^2 x - 1 \mathrm{d}x$	
		ect integration th/without + c
(b)	$\int \frac{1}{x^2} \ln x dx$	
	$\begin{cases} u - \ln x & \Rightarrow \frac{d\alpha}{dx} - \frac{1}{x} \\ \frac{d\alpha}{dx} = x^{-3} & \Rightarrow v = \frac{x^{-1}}{-2} - \frac{-1}{2x^{2}} \end{cases}$	
	$= -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} dx$ Use of 'integration formula in the conformal f	rect direction. M1
	Corre	ct expression. A1
	$= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^2} dx$ An attempt to mu $\frac{k}{x^n}, n \in \square, n \dots 2$	
	$= -\frac{1}{2x^2} \ln x + \frac{1}{2} \left(-\frac{1}{2x^2} \right) (+c)$ "integrate" (proce	attempt to ess the result); M1
	correct solution wit	th/without + c A1 oe (4

			(4)
Question Number	Scheme		Marks
(c)	$\int \frac{e^{3x}}{1+e^x} dx$ $\left\{ u = 1 + e^x \implies \frac{du}{dx} = e^x : \frac{dx}{du} = \frac{1}{e^x} : \frac{dx}{du} = \frac{1}{u-1} \right\}$	Differentiating to find any one of the three underlined	<u>B1</u>
	$= \int \frac{e^{2x} \cdot e^x}{1 + e^x} dx = \int \frac{(u - 1)^2 \cdot e^x}{u} \cdot \frac{1}{e^x} du$ or $= \int \frac{(u - 1)^3}{u} \cdot \frac{1}{(u - 1)} du$	Attempt to substitute for $e^{2x} = f(u)$, their $\frac{dx}{du} = \frac{1}{e^2}$ and $u = 1 + e^x$ or $e^{3x} = f(u)$, their $\frac{dx}{du} = \frac{1}{u-1}$ and $u = 1 + e^x$.	м1*
	$-\int \frac{(u-1)^2}{u} \mathrm{d}u$	$\int \frac{(u-1)^2}{u} \mathrm{d}u$	A1
	$= \int \frac{u^2 - 2u + 1}{u} du$ $= \int u - 2 + \frac{1}{u} du$	An attempt to multiply out their numerator to give at least three terms and divide through each term by u	dM1*
	$-\frac{u^2}{2} - 2u + \ln u \ (+c)$	Correct integration with/without +c	A1
	$= \frac{(1 + e^{x})^{2}}{2} - 2(1 + e^{x}) + \ln(1 + e^{x}) + c$	Substitutes $u = 1 + e^x$ back into their integrated expression with at least two terms.	dM1*
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$ $= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$= \frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) - \frac{3}{2} + c$ $= \frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) + k \qquad AG$	$\frac{\frac{1}{2}e^{2x} - e^x + \ln(1 + e^x) + k}{\text{must use a } + c \text{ and } " - \frac{3}{2} " \text{ combined.}$	A1 cso (7)

Question 5: June 09 Q6

Question Number	Scheme	Marks	5
Q (a)	$\int \sqrt{(5-x)} dx = \int (5-x)^{\frac{1}{2}} dx = \frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} (+C)$ $\left(= -\frac{2}{3} (5-x)^{\frac{3}{2}} + C \right)$	M1 A1	(2)
(b)	(i) $\int (x-1)\sqrt{(5-x)} dx = -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} + \frac{2}{3}\int (5-x)^{\frac{3}{2}} dx$ =	M1 A1ft M1 A1	(4)
	(ii) $\left[-\frac{2}{3} (x-1) (5-x)^{\frac{3}{2}} - \frac{4}{15} (5-x)^{\frac{3}{2}} \right]_{1}^{5} = (0-0) - \left(0 - \frac{4}{15} \times 4^{\frac{3}{2}} \right)$ $= \frac{128}{15} \left(= 8 \frac{8}{15} \approx 8.53 \right) \text{awrt } 8.53$	M1 A1	(2)
	Alternatives for (b) and (c) (b) $u^2 = 5 - x \implies 2u \frac{du}{dx} = -1 \left(\implies \frac{dx}{du} = -2u \right)$ $\int (x-1)\sqrt{(5-x)} dx = \int (4-u^2)u \frac{dx}{du} du = \int (4-u^2)u(-2u) du$ $= \int (2u^4 - 8u^2) du = \frac{2}{5}u^5 - \frac{8}{3}u^3 (+C)$ $= \frac{2}{5}(5-x)^{\frac{1}{2}} - \frac{8}{3}(5-x)^{\frac{3}{2}} (+C)$	M1 A1 M1 A1	
	(c) $x = 1 \Rightarrow u = 2, x = 5 \Rightarrow u = 0$ $\left[\frac{2}{5}u^5 - \frac{8}{3}u^3\right]_2^0 = (0 - 0) - \left(\frac{64}{5} - \frac{64}{3}\right)$ $= \frac{128}{15} \left(= 8\frac{8}{15} \approx 8.53\right) \text{awrt } 8.53$	M1 A1	(2)

Question 6: Jan 10 Q2

(c)(i)	$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} dx$	M1 A1	
	$=\frac{x^2}{2}\ln x - \int \frac{x}{2} \mathrm{d}x$		
	$= \frac{x^2}{2} \ln x - \frac{x^2}{4} \ (+C)$	M1 A1	

Question 7: June 10 Q6

Question Number		Scheme	Mark	(S
	(a)	$f(\theta) = 4\cos^2\theta - 3\sin^2\theta$ $= 4\left(\frac{1}{2} + \frac{1}{2}\cos 2\theta\right) - 3\left(\frac{1}{2} - \frac{1}{2}\cos 2\theta\right)$	M1 M1	
		$= \frac{1}{2} + \frac{7}{2}\cos 2\theta * \qquad \qquad $	A1	(3)
	(b)	$\int \theta \cos 2\theta d\theta = \frac{1}{2} \theta \sin 2\theta - \frac{1}{2} \int \sin 2\theta d\theta$ $= \frac{1}{2} \theta \sin 2\theta + \frac{1}{4} \cos 2\theta$	M1 A1	
		$\int \theta f(\theta) d\theta = \frac{1}{4} \theta^2 + \frac{7}{4} \theta \sin 2\theta + \frac{7}{8} \cos 2\theta$	M1 A1	
		$\left[\dots \right]_0^{\frac{\pi}{2}} = \left[\frac{\pi^2}{16} + 0 - \frac{7}{8} \right] - \left[0 + 0 + \frac{7}{8} \right]$	M1	
		$=\frac{\pi^2}{16}-\frac{7}{4}$	A1	(7) [10]

Question 8: Jan 11 Q1

Question Number	Scheme	Marks
	$\int x \sin 2x dx = -\frac{x \cos 2x}{2} + \int \frac{\cos 2x}{2} dx$	M1 A1 A1
	$=$ $+\frac{\sin 2x}{4}$	M1
	$\begin{bmatrix} & \dots & \end{bmatrix}_0^{\frac{\pi}{2}} = \frac{\pi}{4}$	M1 A1
		[6]