Name: K.NAIKER

Total Marks:.......S....................

GCSE (9-1) Grade 8/9 PROOF

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Show all your working out

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (${ }^{*}$) are ones where the quality of your written communication will be assessed

Advice

- Read each question carefully before you start to answer it
- Attempt every question
- Check your answers if you have time at the end

1. Tanaka says 'When you multiply an odd number and an even number together, you will always get an odd number'.

Show that Tanaka is wrong.

2. Tarish says,
'The sum of two prime numbers is always an even number'.
He is wrong.
Explain why.

$$
\left.\begin{array}{rl}
& 2+3 \\
\downarrow \\
\text { prime prime } & \\
\text { phd }
\end{array}\right\}
$$

3. The nth even number is $2 n$.

The next even number after $2 n$ is $2 n+2$.
(a) Explain why.
$2 n$ is even, $2 n+1$ is odd $: 2 n+2$ is even
Note \rightarrow [$2 n$ is even and 2 is even, even +even = even]
(1)
(b) Write down an expression, in terms of n, for the next even number after $2 n+2$.

$$
2 n+4
$$

(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6 . If $1^{\text {st }}$ even number $=2 n$

Next even number $=2 n+2$
Next even number $=2 n+4$

$$
\begin{aligned}
\therefore \quad 2 n+2 n+2+2 n+4 & =6 n+6 \\
& =6(n+1)
\end{aligned}
$$

which is a multiple of 6
4. Here are the first 4 lines of a number pattern.

(Total 4 marks)
5. n is a whole number.

Prove that $n^{2}+(n+1)^{2}$ is always an odd number.

$$
\begin{aligned}
& n^{2}+(n+1)^{2}=n^{2}+n^{2}+2 n+1 \\
&=2 n^{2}+2 n+1 \\
&=2(\underbrace{n^{2}+n}_{n})+1 \\
& \text { which is an odd number as } 2 n+1 \text { is odd }
\end{aligned}
$$

6. n and a are integers.

Explain why $\left(n^{2}-a^{2}\right)-(n-a)^{2}$ is always an integer.

$$
\begin{aligned}
\therefore\left(n^{2}-a^{2}\right)-(n-a)^{2} & =n^{2}-a^{2}-\overbrace{\left(n^{2}-2 a n+a^{2}\right)}^{-1 x-1=+1} \\
& =n^{2}-a^{2}-n^{2}+2 a n-a^{2} \\
& =-2 a^{2}+2 a n+1=-1 \\
& =2 a(-\underbrace{-a+n}_{\text {integer }}[\text { since integer-integer }] \\
& \ell \quad \text { gives integer }] \\
2 x \text { integer } & =\text { integer } \\
\therefore & 2 a(-a+n) \text { is an integer } \\
& \text { Since integer } x \text { integer }=\text { integer }
\end{aligned}
$$

(Total 2 marks)
7. n is an integer greater than 1 .

Use algebra to show that $\left(n^{2}-1\right)+(n-1)^{2}$ is always equal to an even number.

$$
\begin{aligned}
& n^{2}-1+(n-1)^{2}=n^{2}-1+\left(n^{2}-2 n+1\right) \\
&=n^{2}-1+n^{2}-2 n+1 \\
&=2 n^{2}-2 n \\
&=2(\underbrace{\left(n^{2}-n\right)}_{m} \\
& \text { which is on even number since } 2 m
\end{aligned}
$$

8. Prove that the difference between the squares of any two consecutive even numbers is always an odd number multiplied by 4 .

$$
\begin{aligned}
& \text { let } 1^{\text {st }} \text { even number }=2 n \\
& \text { Then the consecutive even number }=2 n+2
\end{aligned}
$$

$$
(2 n)^{2}+(2 n+2)^{2}=4 n^{2}+4 n^{2}+8 n+4
$$

$$
=8 n^{2}+8 n+4
$$

$$
=4\left(2 n^{2}+2 n+1\right)
$$

$$
=4[2(\underbrace{n^{2}+n}_{m})+1]
$$

$$
=4(2 m+1)
$$

$$
(2 m+1) \text { is an odd number }
$$

$$
h(2 m+1) \text { is an odd number multiplied by } 4
$$

9. Prove algebraically that the sum of the squares of two consecutive integers is always an odd number.

$$
\begin{aligned}
& \text { let } \begin{aligned}
& 1^{\text {st }} \text { integer }=n \\
& \text { Then the next integer }=n+1 \\
& n^{2}+(n+1)^{2}=n^{2}+n^{2}+2 n+1 \\
&=2 n^{2}+2 n+1 \\
&=2(\underbrace{n^{2}+n}_{m})+1 \\
&=2 m+1 \\
& \text { which is an odd number }
\end{aligned}
\end{aligned}
$$

*10. Prove that the sum of the squares of any two odd numbers is always even.

$$
\begin{aligned}
& 1^{\text {st }} \text { odd }=2 n+1 \\
& 2^{n d} \text { odd }=2 n+3 \\
&(2 n+1)^{2}+(2 n+3)^{2}=4 n^{2}+4 n+1+4 n^{2}+12 n+9 \\
&=8 n^{2}+16 n+10 \\
&=2(\underbrace{4 n^{2}+8 n+5}_{m}) \\
& \text { which is an ever as } 2 m \text { is even }
\end{aligned}
$$

(Total 4 marks)
11. Show that $(n+3)^{2}-(n-3)^{2}$ is an even number for all positive integer values of n.

$$
\begin{aligned}
&(n+3)^{2}-(n-3)^{2}=n^{2}+6 n+9-\left(n^{2}-6 n+9\right) \\
&=n^{2}+6 n+9-n^{2}+6 n-9 \\
&=12 n \\
& \text { If } n \text { is positive, then } 12 n \text { is ever }
\end{aligned}
$$

*12. Prove that

$$
(7 n+3)^{2}-(7 n-3)^{2}
$$

is a multiple of 12 , for all positive integer values of n.

$$
\begin{aligned}
&(7 n+3)^{2}-(7 n-3)^{2}=49 n^{2}+42 n+9-\left(49 n^{2}-42 n+9\right) \\
&=49 n^{2}+42 n+9-49 n^{2}+42 n+9 \\
&=84 n \\
&=12(7 n) \\
& \text { which is a multiple of } 12
\end{aligned}
$$

*13. Prove algebraically that the product of two odd numbers is always an odd number.

$$
\begin{aligned}
&(2 n+1)(2 n+3)=4 n^{2}+6 n+2 n+3 \\
&=2(\underbrace{2 n^{2}+3 n+n}_{2 n+3})+3 \\
& \text { which is odd since } 2 m+3 \text { is odd }
\end{aligned}
$$

14. Prove algebraically that the sum of any two odd numbers is even.

$$
\text { let } \begin{aligned}
1^{\text {st }} \text { odd } & =2 n+1 \\
\text { " } 2^{n d} & \text { odd }
\end{aligned}=2 n+3
$$

$$
\begin{aligned}
& 2 n+1+2 n+3=4 n+4 \\
&=2(\underbrace{2 n+2}_{m}) \\
& \text { which is even since } 2 m \text { is even }
\end{aligned}
$$

(Total 3 marks)
*15. Prove algebraically that

$$
(2 n+1)^{2}-(2 n+1) \quad \text { is an even number }
$$

for all positive integer values of n.

$$
\begin{aligned}
&(2 n+1)^{2}-(2 n+1)=\left(4 n^{2}+4 n+1\right)-(2 n+1) \\
&=4 n^{2}+4 n+1-2 n-1 \\
&=4 n^{2}+2 n \\
&=2(\underbrace{2 n^{2}+n}_{m}) \\
& \text { which is even since } 2 m \text { is even }
\end{aligned}
$$

*16. Given that a and b are two consecutive even numbers, prove algebraically that

$$
\left(\frac{a+b}{2}\right)^{2} \text { is always } 1 \text { less than } \frac{a^{2}+b^{2}}{2} .
$$

let $a=2 n$ and $b=2 n+2$
$\left(\frac{a+b}{2}\right)^{2}=\left(\frac{2 n+2 n+2}{2}\right)^{2} \quad\left(\frac{a^{2}+b^{2}}{2}\right)=\frac{(2 n)^{2}+(2 n+2)^{2}}{2}$

$$
\begin{aligned}
\quad=\left(\frac{4 n+2}{2}\right)^{2} & =\frac{4 n^{2}+4 n^{2}+8 n+4}{2} \\
\frac{7(2 n+1)}{f} & =(2 n+1)^{2} \\
=2 n+1 \quad & =\frac{8 n^{2}+8 n+4}{2} \\
=4 n^{2}+4 n+1 \text { which is the same } & =\frac{2\left(4 n^{2}+4 n+2\right)}{\text { when subtract } 1}
\end{aligned}=4 n^{2}+4 n+2 .
$$

(Total 5 marks)
17. Prove that $(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 , for all positive integer values of n.

$$
\begin{aligned}
&(3 n+1)^{2}-(3 n-1)^{2}=\left(9 n^{2}+6 n+1\right)-\left(9 n^{2}-6 n+1\right) \\
&=9 n^{2}+6 n+1-9 n^{2}+6 n+1 \\
&=12 n \\
&=4(3 n) \\
& \text { which is a multiple of } 4
\end{aligned}
$$

*18. Prove that the sum of the squares of two consecutive odd numbers is never a multiple of 8 .

$$
\begin{aligned}
& \text { let } 1^{\text {st }} \text { odd number }=2 n+1 \\
& \text { then the consecutive odd number }=2 n+3 \\
& (2 n+1)^{2}+(2 n+3)^{2}=4 n^{2}+4 n+1+4 n^{2}+12 n+9 \\
& =8 n^{2}+16 n+10 \\
& =8\left(n^{2}+2 n+1\right)+2 \\
& \text { which is } 2 \text { more than a multiple of } 8 \\
& \therefore \text { will never be a multiple of } 8
\end{aligned}
$$

(Total 4 marks)

19. Prove that

$$
(2 n+3)^{2}-(2 n-3)^{2} \text { is a multiple of } 8
$$

for all positive integer values of n.

$$
\begin{aligned}
&(2 n+3)^{2}-(2 n-3)^{2}=4 n^{2}+12 n+9-\left(4 n^{2}-12 n+9\right) \\
&=4 n^{2}+12 n+9-4 n^{2}+12 n+9 \\
&=24 n \\
&=8(3 n) \\
& \text { which } i s \text { a multiple of } 8
\end{aligned}
$$

20. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

$$
\begin{aligned}
& \text { let } 1^{\text {st }} \text { whole number }=n \\
& \text { then the consecutive whole number }=n+1 \\
& n+n+1=2 n+1 \\
& \text { which is an odd number }
\end{aligned}
$$

21. n is an integer

Prove algebraically that the sum of $n(n+1)$ and $n+1$ is always a square number.

$$
\begin{aligned}
n(n+1)+n+1 & =n^{2}+n+n+1 \\
& =n^{2}+2 n+1 \\
& =(n+1)(n+1) \\
& =(n+1)^{2} \\
\text { which } & \text { is a square number }
\end{aligned}
$$

22. Umar thinks $(a+1)^{2}=a^{2}+1$ for all values of a.
(a) Show that Umar is wrong.

$$
\begin{equation*}
(a+1)^{2}=(a+1)(a+1)=a^{2}+2 a+1 \tag{2}
\end{equation*}
$$

Here are two right-angled triangles.
All the measurements are in centimetres.

(b) Show that $2 a+2 b+1=2 c$

$$
\begin{aligned}
(c+1)^{2} & =(a+1)^{2}+(b+1)^{2} \\
c^{2}+2 c+1 & =a^{2}+2 a+1+b^{2}+2 b+1 \\
c^{2}+2 c+1 & =a^{2}+2 a+b^{2}+2 b+2
\end{aligned}
$$

Subs $\underbrace{a^{2}+b^{2}=c^{2}}_{\text {and }}$, into equation

$$
\frac{c^{2}+2 c=\frac{a^{2}+2 a+b^{2}+2 b+1}{+=c^{2}}}{}
$$

a, b and c cannot all be integers.
(c) Explain why.

$$
2 a=\operatorname{eren} \quad \therefore
$$

$$
\begin{aligned}
& 2 c=2 a+2 b+1 \\
& c=\frac{2 a+2 b+1}{2} \\
& \therefore c=\frac{\text { even even }}{2} \\
& \therefore
\end{aligned}
$$

$c=\frac{\text { odd number }}{2}$
$=n$ on-integer
$a \times b$ are integers

$$
2 b=\text { ever }
$$

(Total 6 marks)
*23. Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.
let $1^{\text {st }}$ integer $=n$
Consecutive integer $=n+1$

$$
\begin{aligned}
(n+1)^{2}-n^{2} & =n^{2}+2 n+1-n^{2} \\
& =2 n+1
\end{aligned}
$$

$$
n+n+1=2 n+1
$$

\therefore They are equal
24. Prove that $(2 n+3)^{2}-(2 n-3)^{2}$ is always a multiple of 12 , for all positive integer values of n.

$$
\begin{aligned}
(2 n+3)^{2}-(2 n-3)^{2} & =4 n^{2}+12 n+9-\left(4 n^{2}-12 n+9\right) \\
& =4 n^{2}+12 n+9-4 n^{2}+12 n-9 \\
& =24 n \\
& =12(2 n)
\end{aligned}
$$

which is a multiple of 12
25. Prove that the sum of 3 consecutive odd numbers is always a multiple of 3

$$
\text { let } \begin{aligned}
1^{\text {st }} \text { odd number } & =2 n+1 \\
2^{n d} \text { consecutive odd } & =2 n+3 \\
3^{\text {rd }} \text { consecutive odd } & =2 n+5 \\
2 n+1+2 n+3+2 n+5 & =6 n+9 \\
& =3(2 n+3)
\end{aligned}
$$

which is a multiple of 3
26. Prove algebraically that the sum of the squares of any 2 even positive integers is always a multiple of 4

$$
\begin{aligned}
(2 n)^{2}+(4 n)^{2} & =4 n^{2}+16 n^{2} \\
& =20 n^{2} \\
& =4\left(5 n^{2}\right)
\end{aligned}
$$

\therefore which is a multiple of 4
27. Prove that the sum of the squares of 2 consecutive odd numbers is always 2 more than a multiple of 8

$$
\begin{aligned}
& \text { Let } 1^{\text {st odd number }}
\end{aligned}=2 n+1 .
$$

28. Prove algebraically that the sums of the squares of any 2 consecutive even number is always 4 more than a multiple of 8

$$
\begin{aligned}
(2 n)^{2}+(2 n+2)^{2} & =4 n^{2}+4 n^{2}+8 n+4 \\
& =8 n^{2}+8 n+4 \\
& =8\left(n^{2}+n\right)+4 \\
\text { which } & \text { is } 4 \text { more than a multiple of }
\end{aligned}
$$

$$
n(n+1)
$$

29. The product of 2 consecutive positive integers is added to the larger of the two integers.

Prove that the result is always a square number

$$
\begin{aligned}
& \text { let } \begin{aligned}
& 1^{\text {st }} \text { integer }=n \\
& 2^{\text {nd }} \text { integer }=n+1 \\
& n(n+1)+n+1=n^{2}+n+n+1 \\
&=n^{2}+2 n+1 \\
&=(n+1)(n+1) \\
&=(n+1)^{2} \\
& \text { which is a square number }
\end{aligned}
\end{aligned}
$$

30. c is a postive integer

Prove that $\frac{6 c^{3}+30 c}{3 c^{2}+15}$ is an even number
Factorise both numerator $\Rightarrow \frac{6 c\left(c^{2}+5\right)}{3\left(c^{2}+5\right)}=\frac{6 c}{3}$
and denominator

$$
=2 c
$$

which is an even number

$$
\text { since it is a multiple of } 2
$$

