

A level Applied Paper 3B Mechanics Practice Paper M9 MARK SCHEME

Question 1:

Question Number	Scheme	Marks
	$45 = 2u + \frac{1}{2}a2^2 \implies 45 = 2u + 2a$	M1 A1
	$165 = 6u + \frac{1}{2}a6^2 \implies 165 = 6u + 18a$	M1 A1
	eliminating either u or a	M1
	u = 20 and $a = 2.5$	A1 A1 [7]

Question 2:

Question Number	Scheme	Marks
(a)	$\tan \theta = \frac{p}{2p} \Longrightarrow \theta = 26.6^{\circ}$	M1 A1 (2)
(b)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1
	R is parallel to $\mathbf{i} \implies (-3 + 2p) = 0$	DM1
	$\Rightarrow p = \frac{3}{2}$	A1 (4)

Question 3:

Question Number	Scheme	Marks
(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
	$a = 0.6 \text{ m s}^{-2}$	A1 (3)
(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
	T = 320 N	A1
		OR:
OR:	For car: $1200 - 400 - T = 800 \times 0.6$	M1 A1 ft
	T = 320 N	A1 (3)
(c)	For trailer: $200 + 100 = 200 f$ or $-200 f$	M1 A1
	$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
	For car: $400 + F - 100 = 800 f$ or $-800 f$	M1 A2
	F = 900	A1 (7)
	(N.B. For both: $400 + 200 + F = 1000f$)	
		[13]

Question 4:

Question Number	Scheme	Marks
(a)	$M(Q)$, $50g(1.4-x) + 20g \times 0.7 = T_p \times 1.4$	M1 A1
	$T_p = 588 - 350x$ Printed answer	A1 (3)
(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1
	$T_Q = 98 + 350x$	A1 (3)
(c)	Since $0 \le x \le 1.4$, $98 \le T_p \le 588$ and $98 \le T_Q \le 588$	M1 A1 A1
(d)	20.250 2(500.250)	(3) M1
	98 + 350x = 3(588 - 350x)	MI
	x = 1.19	DM1 A1 (3) [12]

Question 5:

Question Number	Scheme	Marks
	$F = P \cos 50^{\circ}$	M1 A1
	F = 0.2R seen or implied.	B1
	$P\sin 50^\circ + R = 15g$	M1 A1 A1
	Eliminating R ; Solving for P ; P = 37 (2 SF)	DM1;D M1; A1

Question 6:

Question Number	Scheme	Marks
	$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
	$F = \frac{1}{3}R$ seen	B1
	$R = 0.5g\cos\theta$	M1 A1
	Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53° $a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	B1 DM1 A1 [9]

Question 7:

Question Number	Scheme	Mari	ks
(a)	Taking moments about A: $3g \times 0.75 = \frac{T}{\sqrt{2}} \times 0.5$ $T = 3\sqrt{2}g \times \frac{7.5}{5} = \frac{9\sqrt{2}g}{2} (= 62.4N)$	M1A1A1	1 (4)
(b)	$\leftarrow \pm H = \frac{T}{\sqrt{2}} \left(= \frac{9g}{2} \approx 44.1N \right)$	B1	
	$\uparrow \pm V + \frac{T}{\sqrt{2}} = 3g \ (\Rightarrow V = 3g - \frac{9g}{2} = \frac{-3g}{2} \approx -14.7 \text{ N})$	M1A1	
	$\Rightarrow R = \sqrt{81 + 9} \times \frac{g}{2} \approx 46.5(N)$	M1A1	
	at angle $\tan^{-1} \frac{1}{3} = 18.4^{\circ}$ (0.322 radians) below the line of BA 161.6° (2.82 radians) below the line of AB (108.4° or 1.89 radians to upward vertical)	M1A1	(7) [11]

Question 8:

Question Number	Scheme	Mar	ks
(a)	$\rightarrow x = u \cos \alpha t = 10$	M1A1	
	$\uparrow y = u \sin \alpha t - \frac{1}{2}gt^2 = 2$	M1A1	
	$\Rightarrow t = \frac{10}{u \cos \alpha}$		
	$2 = u \sin \alpha \times \frac{10}{u \cos \alpha} - \frac{g}{2} \times \frac{100}{u^2 \cos^2 \alpha}$	M1	
	$= 10 \tan \alpha - \frac{50g}{u^2 \cos^2 \alpha} $ (given answer)	A1	(6)
(b)	$2 = 10 \times 1 - \frac{100 g \times 2}{2u^2 \times 1}$	M1A1	
	$u^2 = \frac{100g}{8}$, $u = \sqrt{\frac{100g}{8}} = 11.1 \text{ (m s}^{-1})$	A1	
	$\frac{1}{2}mu^2 = m \times 9.8 \times 2 + \frac{1}{2}mv^2$	M1A1	
	$v = 9.1ms^{-1}$	A1	(6)
			[12]

Question 9:

Question Number	Scheme	Mark	s
(a)	$\frac{dv}{dt} = 8 - 2t$ $8 - 2t = 0$	M1	
	$Max \ v = 8 \times 4 - 4^2 = 16 \ (ms^{-1})$	M1A1	(4)
(b)	$\int 8t - t^2 dt = 4t^2 - \frac{1}{3}t^3 (+c)$ $(t=0, \text{ displacement} = 0 \implies c=0)$	M1A1	
	$4T^{2} - \frac{1}{3}T^{3} = 0$ $T^{2}(4 - \frac{T}{3}) = 0 \Rightarrow T = 0, 12$	DM1	
	T = 12 (seconds)	A1	(5) [9]

Question 10:

Question Number	Scheme	Marks
(a)	$ \mathbf{v} = \sqrt{1.2^2 + (-0.9)^2} = 1.5 \text{ m s}^{-1}$	M1 A1 (2)
(b)	$(\mathbf{r}_H =)100 \mathbf{j} + t(1.2 \mathbf{i} - 0.9 \mathbf{j}) \mathrm{m}$	M1 A1 (2)
(c)	$(\mathbf{r}_{K} =)9\mathbf{i} + 46\mathbf{j} + t(0.75\mathbf{i} + 1.8\mathbf{j}) \text{ m}$	M1 A1
(d)	$\overrightarrow{HK} = \mathbf{r}_K - \mathbf{r}_H = (9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j}$ m Printed Answer Meet when $\overrightarrow{HK} = 0$	M1 A1 (4)
	(9-0.45t) = 0 and $(2.7t-54) = 0$	M1 A1
	t = 20 from both equations	A1
	$\mathbf{r}_K = \mathbf{r}_H = (24\mathbf{i} + 82\mathbf{j}) \text{ m}$	DM1 A1 cso
		(5)
		[13]