Name:

A level Applied

 Mathematics
Paper 3B Mechanics

Practice Paper J8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 9 questions in this question paper
- The total mark for this paper is 97 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

A firework rocket starts from rest at ground level and moves vertically. In the first 3 s of its motion, the rocket rises 27 m . The rocket is modelled as a particle moving with constant acceleration a $\mathrm{m} \mathrm{s}^{-2}$. Find
(a) the value of a,
(b) the speed of the rocket 3 s after it has left the ground.

After 3 s , the rocket burns out. The motion of the rocket is now modelled as that of a particle moving freely under gravity.
(c) Find the height of the rocket above the ground 5 s after it has left the ground.
(Total 8 marks)

Question 2

A car moves along a horizontal straight road, passing two points A and B. At A the speed of the car is 15 $\mathrm{m} \mathrm{s}^{-1}$. When the driver passes A, he sees a warning sign W ahead of him, 120 m away. He immediately applies the brakes and the car decelerates with uniform deceleration, reaching W with speed $5 \mathrm{~m} \mathrm{~s}^{-1}$. At W, the driver sees that the road is clear. He then immediately accelerates the car with uniform acceleration for 16 s to reach a speed of $V \mathrm{~m} \mathrm{~s}^{-1}(V>15)$. He then maintains the car at a constant speed of $V \mathrm{~m} \mathrm{~s}^{-1}$. Moving at this constant speed, the car passes B after a further 22 s .
(a) Sketch, in the space below, a speed-time graph to illustrate the motion of the car as it moves from A to B.
(b) Find the time taken for the car to move from A to B.

The distance from A to B is 1 km .
(c) Find the value of V.

Question 3

Figure 2

A beam $A B$ has mass 12 kg and length 5 m . It is held in equilibrium in a horizontal position by two vertical ropes attached to the beam. One rope is attached to A, the other to the point C on the beam, where $B C=$ 1 m , as shown in Figure 2. The beam is modelled as a uniform rod, and the ropes as light strings.
(a) Find
(i) the tension in the rope at C,
(ii) the tension in the rope at A.

A small load of mass 16 kg is attached to the beam at a point which is y metres from A. The load is modelled as a particle. Given that the beam remains in equilibrium in a horizontal position,
(b) find, in terms of y, an expression for the tension in the rope at C.

The rope at C will break if its tension exceeds 98 N . The rope at A cannot break.
(c) Find the range of possible positions on the beam where the load can be attached without the rope at C breaking.

Question 4

Figure 1
A particle P of mass 6 kg lies on the surface of a smooth plane. The plane is inclined at an angle of 30° to the horizontal. The particle is held in equilibrium by a force of magnitude 49 N , acting at an angle θ to the plane, as shown in Figure 1. The force acts in a vertical plane through a line of greatest slope of the plane.
(a) Show that $\cos \theta=\frac{3}{5}$.
(b) Find the normal reaction between P and the plane.

The direction of the force of magnitude 49 N is now changed. It is now applied horizontally to P so that P moves up the plane. The force again acts in a vertical plane through a line of greatest slope of the plane.
(c) Find the initial acceleration of P.

Question 5

Figure 3

Two particles A and B, of mass m and $2 m$ respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough horizontal table. The string passes over a small smooth pulley P fixed on the edge of the table. The particle B hangs freely below the pulley, as shown in Figure 3. The coefficient of friction between A and the table is μ. The particles are released from rest with the string taut. Immediately after release, the magnitude of the acceleration of A and B is $\frac{4}{9} g$. By writing down separate equations of motion for A and B,
(a) find the tension in the string immediately after the particles begin to move,
(b) show that $\mu=\frac{2}{3}$.

When B has fallen a distance h, it hits the ground and does not rebound. Particle A is then a distance $\frac{1}{3} h$ from P.
(c) Find the speed of A as it reaches P.
(d) State how you have used the information that the string is light.

Question 6

[In this question, the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]
A particle P is moving with constant velocity $(-5 \mathbf{i}+8 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. Find
(a) the speed of P,
(b) the direction of motion of P, giving your answer as a bearing.

At time $t=0, P$ is at the point A with position vector $(7 \mathbf{i}-10 \mathbf{j}) \mathrm{m}$ relative to a fixed origin O. When $t=3 \mathrm{~s}$, the velocity of P changes and it moves with velocity $(u \mathbf{i}+v \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, where u and v are constants. After a further 4 s , it passes through O and continues to move with velocity $(u \mathbf{i}+v \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.
(c) Find the values of u and v.
(d) Find the total time taken for P to move from A to a position which is due south of A.

Question 7

Figure 2

A ladder $A B$, of mass m and length $4 a$, has one end A resting on rough horizontal ground. The other end B rests against a smooth vertical wall. A load of mass $3 m$ is fixed on the ladder at the point C, where $A C=$ a. The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle. The ladder rests in limiting equilibrium making an angle of 30° with the wall, as shown in Figure 2.

Find the coefficient of friction between the ladder and the ground.

Question 8

Figure 3
[In this question, the unit vectorsi andj are in a vertical plane,ibeing horizontal andjbeing vertical.]
A particle P is projected from the point A which has position vector 47.5 j metres with respect to a fixed origin O. The velocity of projection of P is $(2 u \mathbf{i}+5 u \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. The particle moves freely under gravity passing through the point B with position vector $30 \mathbf{i}$ metres, as shown in Figure 3.
(a) Show that the time taken for P to move from A to B is 5 s .
(b) Find the value of u.
(c) Find the speed of P at B.

Question 9

At time t seconds ($t \geq 0$), a particle P has position vector \mathbf{p} metres, with respect to a fixed origin O, where

$$
\mathbf{p}=\left(3 t^{2}-6 t+4\right) \mathbf{i}+\left(3 t^{3}-4 t\right) \mathbf{j} .
$$

Find
(a) the velocity of P at time t seconds,
(b) the value of t when P is moving parallel to the vector \mathbf{i}.

