Name:

Total Marks:

A level Applied Mathematics Paper 3B Mechanics

Practice Paper J8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 9 questions in this question paper
- The total mark for this paper is 97.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

A firework rocket starts from rest at ground level and moves vertically. In the first 3 s of its motion, the rocket rises 27 m. The rocket is modelled as a particle moving with constant acceleration a m s⁻². Find

- (a) the value of a, (2)
- (b) the speed of the rocket 3 s after it has left the ground.

(2)

(4)

After 3 s, the rocket burns out. The motion of the rocket is now modelled as that of a particle moving freely under gravity.

(c) Find the height of the rocket above the ground 5 s after it has left the ground.

(Total 8 marks)

Question 2

A car moves along a horizontal straight road, passing two points A and B. At A the speed of the car is 15 m s⁻¹. When the driver passes A, he sees a warning sign W ahead of him, 120 m away. He immediately applies the brakes and the car decelerates with uniform deceleration, reaching W with speed 5 m s⁻¹. At W, the driver sees that the road is clear. He then immediately accelerates the car with uniform acceleration for 16 s to reach a speed of V m s⁻¹ (V > 15). He then maintains the car at a constant speed of V m s⁻¹. Moving at this constant speed, the car passes B after a further 22 s.

- (a) Sketch, in the space below, a speed-time graph to illustrate the motion of the car as it moves from *A* to *B*.
- (b) Find the time taken for the car to move from A to B.

(3)

The distance from A to B is 1 km.

(c) Find the value of V.

(5)

(Total 11 marks)

Figure 2

A beam AB has mass 12 kg and length 5 m. It is held in equilibrium in a horizontal position by two vertical ropes attached to the beam. One rope is attached to A, the other to the point C on the beam, where BC = 1 m, as shown in Figure 2. The beam is modelled as a uniform rod, and the ropes as light strings.

- (a) Find
 - (i) the tension in the rope at C,
 - (ii) the tension in the rope at A.

(5)

A small load of mass 16 kg is attached to the beam at a point which is *y* metres from *A*. The load is modelled as a particle. Given that the beam remains in equilibrium in a horizontal position,

(b) find, in terms of y, an expression for the tension in the rope at C. (3)

The rope at *C* will break if its tension exceeds 98 N. The rope at *A* cannot break.

(c) Find the range of possible positions on the beam where the load can be attached without the rope at *C* breaking.

(Total 11 marks)

Figure 1

A particle P of mass 6 kg lies on the surface of a smooth plane. The plane is inclined at an angle of 30° to the horizontal. The particle is held in equilibrium by a force of magnitude 49 N, acting at an angle θ to the plane, as shown in Figure 1. The force acts in a vertical plane through a line of greatest slope of the plane.

(a) Show that
$$\cos \theta = \frac{3}{5}$$
.

(b) Find the normal reaction between *P* and the plane. (4)

The direction of the force of magnitude 49 *N* is now changed. It is now applied horizontally to *P* so that *P* moves up the plane. The force again acts in a vertical plane through a line of greatest slope of the plane.

(c) Find the initial acceleration of *P*. (4)

(Total 11 marks)

Figure 3

Two particles A and B, of mass m and 2m respectively, are attached to the ends of a light inextensible string. The particle A lies on a rough horizontal table. The string passes over a small smooth pulley P fixed on the edge of the table. The particle B hangs freely below the pulley, as shown in Figure 3. The coefficient of friction between A and the table is μ . The particles are released from rest with the string taut.

Immediately after release, the magnitude of the acceleration of A and B is $\frac{1}{9}g$. By writing down separate equations of motion for A and B,

(a) find the tension in the string immediately after the particles begin to move,

(b) show that
$$\mu = \frac{2}{3}$$
. (5)

When *B* has fallen a distance *h*, it hits the ground and does not rebound. Particle *A* is then a distance $\frac{1}{3}h$ from *P*.

(c) Find the speed of A as it reaches P. (6)

(d) State how you have used the information that the string is light. (1)

(Total 15 marks)

Question 6

[In this question, the unit vectors i and j are due east and due north respectively.]

A particle P is moving with constant velocity (-5i + 8j) m s⁻¹. Find

(a) the speed of
$$P$$
, (2)

(b) the direction of motion of *P*, giving your answer as a bearing. (3)

At time t = 0, P is at the point A with position vector $(7\mathbf{i} - 10\mathbf{j})$ m relative to a fixed origin O. When t = 3 s, the velocity of P changes and it moves with velocity $(u\mathbf{i} + v\mathbf{j})$ m s⁻¹, where u and v are constants. After a further 4 s, it passes through O and continues to move with velocity $(u\mathbf{i} + v\mathbf{j})$ m s⁻¹.

(c) Find the values of *u* and *v*.

(d) Find the total time taken for *P* to move from *A* to a position which is due south of *A*. (3)

(Total 13 marks)

Figure 2

A ladder AB, of mass m and length 4a, has one end A resting on rough horizontal ground. The other end B rests against a smooth vertical wall. A load of mass 3m is fixed on the ladder at the point C, where AC = a. The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle. The ladder rests in limiting equilibrium making an angle of 30° with the wall, as shown in Figure 2.

Find the coefficient of friction between the ladder and the ground.

(10)

(Total 10 marks)

Figure 3

[In this question, the unit vectorsi and are in a vertical plane, ibeing horizontal and being vertical.]

A particle P is projected from the point A which has position vector 47.5 \mathbf{j} metres with respect to a fixed origin O. The velocity of projection of P is $(2u\mathbf{i} + 5u\mathbf{j})$ m s⁻¹. The particle moves freely under gravity passing through the point B with position vector 30 \mathbf{i} metres, as shown in Figure 3.

(a) Show that the time taken for *P* to move from *A* to *B* is 5 s. (6)

(b) Find the value of *u*. (2)

(c) Find the speed of P at B. (5)

(Total 13 marks)

Question 9

At time t seconds ($t \ge 0$), a particle P has position vector **p** metres, with respect to a fixed origin O, where

$$\mathbf{p} = (3t^2 - 6t + 4)\mathbf{i} + (3t^3 - 4t)\mathbf{j}.$$

Find

(a) the velocity of P at time t seconds, (2)

(b) the value of t when P is moving parallel to the vector \mathbf{i} .

(Total 5 marks)

TOTAL FOR PAPER IS 97 MARKS