

A level Applied Paper 3B Mechanics Practice Paper J9 MARK SCHEME

Question 2:

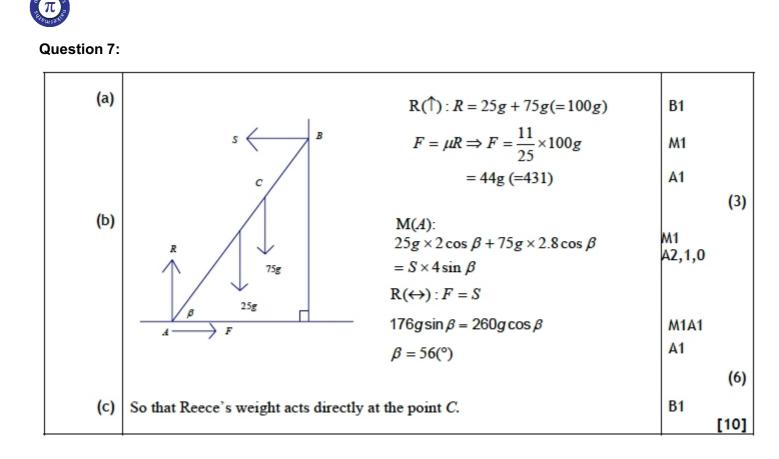
Question Number	Scheme	Marks
	$-6\mathbf{i} + \mathbf{j} = \mathbf{u} + 3(2\mathbf{i} - 5\mathbf{j})$ $\Rightarrow \mathbf{u} = -12\mathbf{i} + 16\mathbf{j}$ $\Rightarrow u = \sqrt{(-12)^2 + 16^2} = 20$	M1 A1 A1 cso M1 A1 [5]

Question 3:

Question Number	Scheme		Scheme	
(a)	j $\tan \theta = \frac{2}{1} \Rightarrow \theta = 63.4^{\circ}$ θ angle is 153.4°	M1 A1 A1 (3)		
(b)	$(4+p)\mathbf{i} + (q-5)\mathbf{j}$ (q-5) = -2(4+p) 2p+q+3 = 0 *	B1 M1 A1 A1 <mark>(</mark> 4)		
(c)	$q = 1 \Rightarrow p = -2$ $\Rightarrow \mathbf{R} = 2\mathbf{i} - 4\mathbf{j}$ $\Rightarrow \mathbf{R} = \sqrt{2^2 + (-4)^2} = \sqrt{20}$ $\sqrt{20} = m8\sqrt{5}$ $\Rightarrow m = \frac{1}{4}$	B1 M1 M1 A1 f.t. M1 A1 f.t. A1 cao (7)		
		[14]		

Question 4:

Question Number	Scheme	Marl	ks
(a)	PN I.lg	B2 -1 e.e.((labels neede	not
(b)	$F = \frac{1}{2}R$ (↑), $R \cos \alpha + F \sin \alpha = mg$ $R = \frac{1.1g}{(\cos \alpha + \frac{1}{2} \sin \alpha)} = 9.8 \text{ N}$ (→), $P + \frac{1}{2}R \cos \alpha = R \sin \alpha$ $P = R(\sin \alpha - \frac{1}{2} \cos \alpha)$ $= 1.96$	B1 M1 A2 M1 A1 M1 A2 M1 A1	(6) (5) [13]



Question Number		Scheme	Marks
(a)	$P Q \rightarrow R S$ $\downarrow 0 P Q \rightarrow R S$ $\downarrow 0 q C 20 g D$	C + D = 120g M(Q), $80g.0.8 - 40g.0.4 = D.1.6solvingC = 90g; D = 30g$	M1 A1 M1 A1 M1 A1 A1 (7)
(b)	$\begin{array}{cccc} P & Q & x & X & R & S \\ \hline & & & & & & & \\ 40g & 2F & 20g & 60g & F \end{array}$	2F + F = 40g + 20g + 60g M(Q), $60gx + 20g.0.8 = 40g.0.4 + F.1.6$ solving $QX = x = \frac{16}{15}$ m = 1.07m	M1 A1 M1 A1 M1 A1 (6) [13]

Question 6:

Question Number	Scheme	
(a)	$T - 5g \sin \alpha = 5a$ 15g - T = 15a solving for a a = 0.6g solving for T T = 6g	M1 A1 M1 A1 M1 A1 M1 A1 (8)
(b)	For Q : $5g - N = 5a$ N = 2g	M1 A1 A1 f.t. (3)
(c)	$F = 2T \cos(\frac{90^{\circ} - \alpha}{2})$ = 12g cos 26.56° = 105 N	M1 A2 A1 f.t. A1 (5) [16]

Question 8:

÷

(a)	$v = 10t - 2t^2, \ s = \int v dt$ = $5t^2 - \frac{2t^3}{3}(+C)$	M1	
	$= 5t^{2} - \frac{2t^{3}}{3}(+C)$ $t = 6 \implies s = 180 - 144 = \underline{36} (m)$	A1 A1	(2)
(b)	$\underline{s} = \int v dt = \frac{-432t^{-1}}{-1} \left(+ K \right) = \frac{432}{\underline{t}} \left(+ K \right)$	<u>B1</u>	(3)
	$t = 6, s = "36" \implies 36 = \frac{432}{6} + K$ $\implies K = -36$	M1* A1	
	At $t = 10$, $s = \frac{432}{10} - 36 = \underline{7.2}$ (m)	d*M1 <u>A1</u>	(5)
			[8]

Question 9:

Question Number	Scheme	N	arks
<mark>(</mark> a)	Horizontal distance: $57.6 = p \ge 3$ p = 19.2	M1 A1	(2)
(b)	Use $s = ut + \frac{1}{2}at^2$ for vertical displacement.	M1	
	$-0.9 = q \times 3 - \frac{1}{2}g \times 3^2$	A1	
	$-0.9 = 3q - \frac{9g}{2} = 3q - 44.1$		
	$q = \frac{43.2}{3} = 14.4$ *AG*	A1 (CSO
(c)	initial speed $\sqrt{p^2 + 14.4^2}$ (with their p)	M1	(3)
	$=\sqrt{576} = 24 \text{ (m s}^{-1})$	A1 (cao (2)
(d)	$\tan \alpha = \frac{14.4}{p} \left(=\frac{3}{4}\right) $ (with their p)	B1	(2)
(e)	When the ball is 4 m above ground:		<mark>(</mark> 1)
	$3.1 = ut + \frac{1}{2}at^2 \text{ used}$	M1	
	$3.1 = 14.4t - \frac{1}{2}gt^2$ o.e $(4.9t^2 - 14.4t + 3.1 = 0)$	A1	
	$\Rightarrow t = \frac{14.4 \pm \sqrt{(14.4)^2 - 4(4.9)(3.1)}}{2(4.9)}$ seen or implied	M1	
	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8} = 0.023389 \text{ or } 2.70488 \text{ awrt } 0.23 \text{ and } 2.7$	A1	
	duration = $2.70488 0.23389$ = 2.47 or 2.5 (seconds)	M1 A1	
or6 (e)	M1A1M1 as above		<mark>(</mark> 6)
	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8}$	A1	
	Duration $2 \times \frac{\sqrt{146.6}}{9.8}$ o.e.	M1	
	= 2.47 or 2.5 (seconds)	A1	<mark>(6)</mark>
(f)	Eg. : Variable 'g', Air resistance, Speed of wind, Swing of ball, The ball is not a particle.	B1	10
			(1) [15]