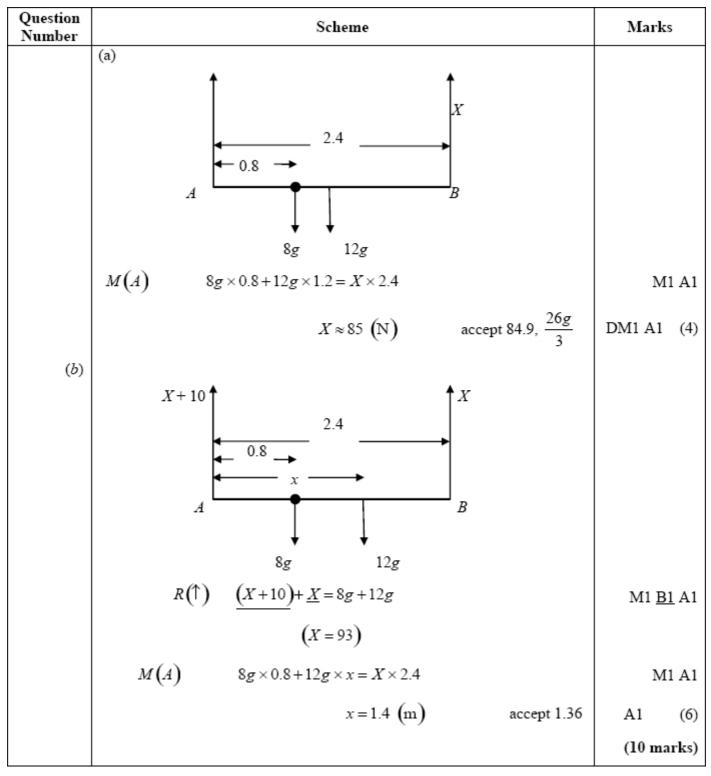


A level Applied Paper 3B Mechanics Practice Paper M8 MARK SCHEME

Question 1:

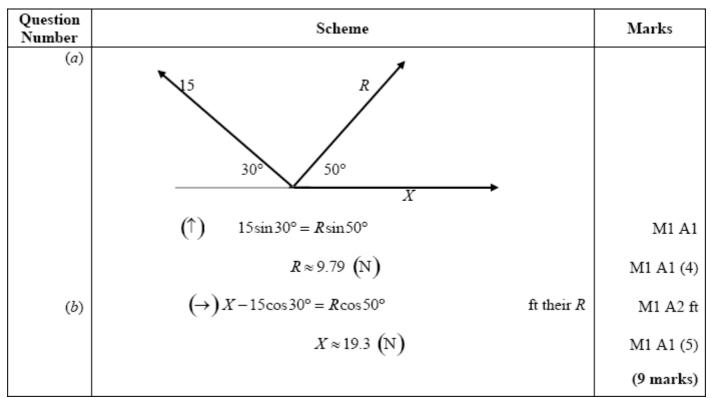
Question Number	Scheme	Marks
(a)	$v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$	M1 A1
	Leading to $u = 10.5$	A1 (3)
(b)	$v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 ft.
	$T = 2\frac{6}{7}$ (s)	M1 A1 (4)
		(7 marks)

Question 2:


Question Number	Scheme	Marks
(a)	v_{25} shape 10 0 30 90 t $25, 10, 30, 90$	B1 B1 (2)
(b)	(b) $30 \times 25 + \frac{1}{2}(25+10)t + 10(60-t) = 1410$ 7.5t = 60	M1 <u>A1</u> A1
	t = 8 (s)	M1 A1
	$a = \frac{25 - 10}{8} = 1.875 \text{ (ms}^{-2}\text{)} \qquad 1\frac{7}{8}$	M1 A1 (7)
		(9 marks)

Question Number	Scheme	Marks	
(a)	$\begin{array}{cccc} T & T & 30 \\ & & & & & \\ \mu 2g & & & \mu 3g \end{array}$		
	$s = ut + \frac{1}{2}at^2 \implies 6 = \frac{1}{2}a \times 9$	M1	
	$a = 1\frac{1}{3} (ms^{-2})$	A1 (2)	
(b)	N2L for system $30 - \mu 5g = 5a$ ft their <i>a</i> , accept symbol	M1 A1ft	
	$\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48	M1 A1 (4)	
(c)	N2L for P $T - \mu 2g = 2a$ ft their μ , their a , accept symbols	M1 A1 ft	
	$T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$		
	Leading to $T = 12$ (N) awrt 12	M1 A1 (4)	
(<i>d</i>)	The acceleration of P and Q (or the whole of the system) is the same.	B1 (1)	
(e)	$v = u + at \implies v = \frac{4}{3} \times 3 = 4$	B1 ft on a	
	N2L (for system or either particle)		
	$-5\mu g = 5a$ or equivalent	M1	
	$a = -\mu g$ $v = u + at \implies 0 = 4 - \mu gt$	М1	
		IVI I	
	Leading to $t = \frac{6}{7}$ (s) accept 0.86, 0.857	A1 (4)	
		(15 marks)	

Question 4:



Question 5:

Question Number	Scheme	Marks	
(a)	R 45 N μR 30° 4g		
(b)	$R = 45\cos 40^\circ + 4g\cos 30^\circ$ $R \approx 68$ Use of $F = \mu R$	accept 68.4	M1 A2, 1, 0 M1 A1 (5) M1
	$F + 4g \sin 30 = 45 \cos 50^{\circ}$ Leading to $\mu \approx 0.14$	accept 0.136	M1 A2, 1, 0 M1 A1(6) (11 marks)

Question 6:

Question 7:

Question Number	Scheme	Marks
(a)	$\tan\theta = \frac{8}{6}$	M1
	$\theta \approx 53^{\circ}$	A1 (2)
(b)	$\mathbf{F} = 0.4(6\mathbf{i} + 8\mathbf{j}) (= 2.4\mathbf{i} + 3.2\mathbf{j})$	M1
	$ \mathbf{F} = \sqrt{(2.4^2 + 3.2^2)} = 4$	M1 A1 (3)
(c)	$\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$	M1 A1
	F = 0.4(6i + 8j) (= 2.4i + 3.2j) $ F = \sqrt{(2.4^2 + 3.2^2)} = 4$ v = 9i - 10j + 5(6i + 8j) $= 39i + 30j (ms^{-1})$	A1 (3)
		(8 marks)

Question 8:

Question Number	Scheme	Marks
(a)	N2L $(6t-5)\mathbf{i} + (t^2-2t)\mathbf{j} = 0.5\mathbf{a}$	M1
	$\mathbf{a} = (12t - 10)\mathbf{i} + (2t^2 - 4t)\mathbf{j}$	A1
	$\mathbf{v} = (6t^2 - 10t)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2)\mathbf{j}$ (+C) ft their a	M1 A1ft+A1ft
	$\mathbf{v} = (6t^2 - 10t + 1)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2 - 4)\mathbf{j}$	A1 (6)

Question 9:

Question Number	Scheme	Marks
(a)	P 0.5a	
	$\begin{array}{c} 1.5a \\ \mu R \end{array} \qquad \qquad$	
	$R(\uparrow)$ $R+P\cos\alpha = W$	M1 A1
	$M(A)$ $P \times 2a = W \times 1.5a \cos \alpha$	M1 A1
	$\left(P=\frac{3}{4}W\cos\alpha\right)$	
	$R = W - P\cos\alpha = W - \frac{3}{4}W\cos^2\alpha$	DM1
	$=\frac{1}{4}\left(4-3\cos^2\alpha\right)W \bigstar \qquad \qquad$	A1 (6)
(b)	Using $\cos \alpha = \frac{2}{3}$, $R = \frac{2}{3}W$	B1
	$R(\rightarrow) \qquad \mu R = P \sin \alpha$	M1 A1
	Leading to $\mu = \frac{3}{4} \sin \alpha$	
	$\left(\sin\alpha = \sqrt{\left(1 - \frac{4}{9}\right)} = \frac{\sqrt{5}}{3}\right)$	
	$\mu = \frac{\sqrt{5}}{4} \qquad \text{awrt } 0.56$	M1 A1 (5)
		(11 marks)

Question 10:

Question Number		Scheme		Marks
(a)	(\downarrow)	$u_y = 25 \sin 30^\circ (= 12.5)$		B1
		$12 = 12.5t + 4.9t^2$	-1 each error	M1 A2, 1, 0
		Leading to $t = 0.743$, 0.74		A1 (5)
(b)	(\rightarrow)	$u_x = 25\cos 30^\circ \left(=\frac{25\sqrt{3}}{2} \approx 21.65\right)$		B1
		$OB = 25\cos 30^{\circ} \times t \ (\approx 16.094\ 58)$	ft their (a)	M1 A1ft
		$TB \approx 1.1 \text{ (m)}$	awrt 1.09	A1 (4)
(c)	(\rightarrow)	$15 = u_x \times t \Longrightarrow t = \frac{15}{u_x} (= \frac{2\sqrt{3}}{5} \approx 0.693 \text{ or } t$	0.69)	M1 A1
	either	(\downarrow) $v_y = 12.5 + 9.8t ~(\approx 19.2896)$)	M1
		$V^2 = u_x^2 + v_y^2 \ (\approx 840.840)$		
		$V \approx 29 \text{ (ms}^{-1})$, 29.0		M1 A1 (5)
				(14 marks)