Name:

Total Marks:

A level Applied Mathematics Paper 3B Mechanics

Practice Paper M8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

At time t = 0, a particle is projected vertically upwards with speed u m s⁻¹ from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s⁻¹. Find

		(Total 7 marks
(b)	the value of T.	(4)
(a)	the value of <i>u</i> ,	(3)

Question 2

A car is moving along a straight horizontal road. The speed of the car as it passes the point *A* is 25 m s⁻¹ and the car maintains this speed for 30 s. The car then decelerates uniformly to a speed of 10 m s⁻¹. The speed of 10 m s⁻¹ is then maintained until the car passes the point *B*. The time taken to travel from *A* to *B* is 90 s and AB = 1410 m.

(a)	Sketch a speed-time graph to show the motion of the car from A to B.	(2)	
u)	ore con a speed time graph to show the motion of the car non 71 to D.	(~)	

(b) Calculate the deceleration of the car as it decelerates from 25 m s⁻¹ to 10 m s ⁻¹. (7)

```
(Total 9 marks)
```


Two particles *P* and *Q*, of mass 2 kg and 3 kg respectively, are joined by a light inextensible string. Initially the particles are at rest on a rough horizontal plane with the string taut. A constant force **F** of magnitude 30 N is applied to *Q* in the direction *PQ*, as shown in Figure 4. The force is applied for 3 s and during this time *Q* travels a distance of 6 m. The coefficient of friction between each particle and the plane is μ . Find

(a)	the acceleration of Q,	(2)
(b)	the value of μ ,	(4)
(c)	the tension in the string.	(4)
(d)	State how in your calculation you have used the information that the string is inextensible.	(1)
Whe	en the particles have moved for 3 s, the force F is removed.	

(e) Find the time between the instant that the force is removed and the instant that Q comes to rest. (4)

(Total 15 marks)

Question 5

Figure 2

(a) Find the tension in the rope attached at *B*.

The plank is now modelled as a non-uniform rod. With the new model, the tension in the rope attached at A is 10 N greater than the tension in the rope attached at B.

(b) Find the distance of the centre of mass of the plank from A.

45 N

50°

30°

Figure 3

A package of mass 4 kg lies on a rough plane inclined at 30° to the horizontal. The package is held in equilibrium by a force of magnitude 45 N acting at an angle of 50° to the plane, as shown in Figure 3. The force is acting in a vertical plane through a line of greatest slope of the plane. The package is in equilibrium on the point of moving up the plane. The package is modelled as a particle. Find

- (a) the magnitude of the normal reaction of the plane on the package, (5)
- (b) the coefficient of friction between the plane and the package.

(Total 11 marks)

(6)

(Total 10 marks)

(4)

(6)

Figure 1

Two forces **P** and **Q** act on a particle at a point *O*. The force **P** has magnitude 15 N and the force **Q** has magnitude *X* newtons. The angle between **P** and **Q** is 150°, as shown in Figure 1. The resultant of **P** and **Q** is **R**.

Given that the angle between ${\bf R}$ and ${\bf Q}$ is 50°, find

		(Total 9 marks)
(b)) the value of X.	(5)
(a)) the magnitude of R ,	(4)

Question 7

A particle *P* of mass 0.4 kg moves under the action of a single constant force **F** newtons. The acceleration of *P* is $(6i + 8j) \text{ m s}^{-2}$. Find

(a) the angle between the acceleration and i ,	(2)
(b) the magnitude of F .	(3)
At time <i>t</i> seconds the velocity of <i>P</i> is \mathbf{v} m s ⁻¹ . Given that when <i>t</i> = 0, \mathbf{v} = 9 \mathbf{i} – 10 \mathbf{j} ,	

(c) find the velocity of P when t = 5.

```
(Total 8 marks)
```

(3)

Question 8

A particle *P* of mass 0.5 kg is moving under the action of a single force **F** newtons. At time *t* seconds,

$$\mathbf{F} = (6t - 5)\mathbf{i} + (t^2 - 2t)\mathbf{j}.$$

The velocity of *P* at time *t* seconds is \mathbf{v} m s⁻¹. When t = 0, $\mathbf{v} = \mathbf{i} - 4\mathbf{j}$.

Find **v** at time *t* seconds.

(6)

A plank rests in equilibrium against a fixed horizontal pole. The plank is modelled as a uniform rod *AB* and the pole as a smooth horizontal peg perpendicular to the vertical plane containing *AB*. The rod has length 3a and weight *W* and rests on the peg at *C*, where AC = 2a. The end *A* of the rod rests on rough horizontal ground and *AB* makes an angle α with the ground, as shown in Figure 2.

(a) Show that the normal reaction on the rod at *A* is $\frac{1}{4}$ (4 – 3 cos² α)*W*. (6)

Given that the rod is in limiting equilibrium and that $\cos \alpha = \frac{2}{3}$,

(b) find the coefficient of friction between the rod and the ground.

(5)

(Total 11 marks)

Figure 4

A ball is thrown from a point *A* at a target, which is on horizontal ground. The point *A* is 12 m above the point *O* on the ground. The ball is thrown from *A* with speed 25 m s⁻¹ at an angle of 30° below the horizontal. The ball is modelled as a particle and the target as a point *T*. The distance *OT* is 15 m. The ball misses the target and hits the ground at the point *B*, where *OTB* is a straight line, as shown in Figure 4. Find

(a) the time taken by the ball to travel from A to B,	(5)
(b) the distance <i>TB</i> .	(4)
The point X is on the path of the ball vertically above T .	
(c) Find the speed of the ball at X.	(5)

(Total 14 marks)

```
TOTAL FOR PAPER IS 100 MARKS
```