Name:

A level Applied

 Mathematics
Paper 3B Mechanics

Practice Paper M8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

At time $t=0$, a particle is projected vertically upwards with speed $u \mathrm{~m} \mathrm{~s}^{-1}$ from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed $17.5 \mathrm{~m} \mathrm{~s}^{-1}$. Find
(a) the value of u,
(b) the value of T.

Question 2

A car is moving along a straight horizontal road. The speed of the car as it passes the point A is $25 \mathrm{~m} \mathrm{~s}^{-1}$ and the car maintains this speed for 30 s . The car then decelerates uniformly to a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. The speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ is then maintained until the car passes the point B. The time taken to travel from A to B is 90 s and $A B=1410 \mathrm{~m}$.
(a) Sketch a speed-time graph to show the motion of the car from A to B.
(b) Calculate the deceleration of the car as it decelerates from $25 \mathrm{~m} \mathrm{~s}^{-1}$ to $10 \mathrm{~m} \mathrm{~s}^{-1}$.

Question 3

Figure 4

Two particles P and Q, of mass 2 kg and 3 kg respectively, are joined by a light inextensible string. Initially the particles are at rest on a rough horizontal plane with the string taut. A constant force F of magnitude 30 N is applied to Q in the direction $P Q$, as shown in Figure 4. The force is applied for 3 s and during this time Q travels a distance of 6 m . The coefficient of friction between each particle and the plane is μ. Find
(a) the acceleration of Q,
(b) the value of μ,
(c) the tension in the string.
(d) State how in your calculation you have used the information that the string is inextensible.

When the particles have moved for 3 s , the force \mathbf{F} is removed.
(e) Find the time between the instant that the force is removed and the instant that Q comes to rest.

Question 4

Figure 2
A plank $A B$ has mass 12 kg and length 2.4 m . A load of mass 8 kg is attached to the plank at the point C, where $A C=0.8 \mathrm{~m}$. The loaded plank is held in equilibrium, with $A B$ horizontal, by two vertical ropes, one attached at A and the other attached at B, as shown in Figure 2. The plank is modelled as a uniform rod, the load as a particle and the ropes as light inextensible strings.
(a) Find the tension in the rope attached at B.

The plank is now modelled as a non-uniform rod. With the new model, the tension in the rope attached at A is 10 N greater than the tension in the rope attached at B.
(b) Find the distance of the centre of mass of the plank from A.
(Total 10 marks)

Question 5

Figure 3
A package of mass 4 kg lies on a rough plane inclined at 30° to the horizontal. The package is held in equilibrium by a force of magnitude 45 N acting at an angle of 50° to the plane, as shown in Figure 3. The force is acting in a vertical plane through a line of greatest slope of the plane. The package is in equilibrium on the point of moving up the plane. The package is modelled as a particle. Find
(a) the magnitude of the normal reaction of the plane on the package,
(b) the coefficient of friction between the plane and the package.

Question 6

Figure 1

Two forces \mathbf{P} and \mathbf{Q} act on a particle at a point \mathbf{O}. The force \mathbf{P} has magnitude 15 N and the force \mathbf{Q} has magnitude X newtons. The angle between \mathbf{P} and \mathbf{Q} is 150°, as shown in Figure 1. The resultant of \mathbf{P} and \mathbf{Q} is \mathbf{R}.

Given that the angle between \mathbf{R} and \mathbf{Q} is 50°, find
(a) the magnitude of R ,
(b) the value of X.

Question 7

A particle P of mass 0.4 kg moves under the action of a single constant force F newtons. The acceleration of P is $(6 \mathbf{i}+8 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$. Find
(a) the angle between the acceleration and \mathbf{i},
(b) the magnitude of \mathbf{F}.

At time t seconds the velocity of P is $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$. Given that when $t=0, \mathbf{v}=9 \mathbf{i}-10 \mathbf{j}$,
(c) find the velocity of P when $t=5$.

Question 8

A particle P of mass 0.5 kg is moving under the action of a single force \mathbf{F} newtons. At time t seconds,

$$
\mathbf{F}=(6 t-5) \mathbf{i}+\left(t^{2}-2 t\right) \mathbf{j} .
$$

The velocity of P at time t seconds is $\mathbf{v} \mathrm{ms}^{-1}$. When $t=0, \mathbf{v}=\mathbf{i}-4 \mathbf{j}$.
Find \mathbf{v} at time t seconds.

Question 9

Figure 2

A plank rests in equilibrium against a fixed horizontal pole. The plank is modelled as a uniform rod $A B$ and the pole as a smooth horizontal peg perpendicular to the vertical plane containing $A B$. The rod has length $3 a$ and weight W and rests on the peg at C, where $A C=2 a$. The end A of the rod rests on rough horizontal ground and $A B$ makes an angle α with the ground, as shown in Figure 2.
(a) Show that the normal reaction on the rod at A is $\frac{1}{4}\left(4-3 \cos ^{2} \alpha\right) W$.

Given that the rod is in limiting equilibrium and that $\cos \alpha=\frac{2}{3}$,
(b) find the coefficient of friction between the rod and the ground.

Question 10

Figure 4

A ball is thrown from a point A at a target, which is on horizontal ground. The point A is 12 m above the point O on the ground. The ball is thrown from A with speed $25 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 30° below the horizontal. The ball is modelled as a particle and the target as a point T. The distance $O T$ is 15 m . The ball misses the target and hits the ground at the point B, where OTB is a straight line, as shown in Figure 4. Find
(a) the time taken by the ball to travel from A to B,
(b) the distance $T B$.

The point X is on the path of the ball vertically above T.
(c) Find the speed of the ball at X.

