Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper J10

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

$$
f(x)=x^{2}+4 k x+(3+11 k) \text {, where } k \text { is a constant. }
$$

(a) Express $\mathrm{f}(x)$ in the form $(x+p)^{2}+q$, where p and q are constants to be found in terms of k.

Given that the equation $f(x)=0$ has no real roots,
(b) find the set of possible values of k.

Given that $k=1$,
(c) sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of any point at which the graph crosses a coordinate axis.

Question 2

(a) Factorise completely $x^{3}-4 x$
(b) Sketch the curve C with equation

$$
y=x^{3}-4 x,
$$

showing the coordinates of the points at which the curve meets the x-axis.

The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.
(c) Find an equation of the line which passes through A and B, giving your answer in the form $y=m x+c$, where m and c are constants.
(d) Show that the length of $A B$ is $k \sqrt{ } 10$, where k is a constant to be found.

Question 3.

Figure 3 shows a sketch of the circle C with centre N and equation

$$
(x-2)+(y+1)^{2}=\frac{169}{4}
$$

(a) Write down the coordinates of N.
(b) Find the radius of C.

The chord $A B$ of C is parallel to the x-axis, lies below the x-axis and is of length 12 units as shown in Figure 3.
(c) Find the coordinates of A and the coordinates of B.
(d) Show that angle $A N B=134.8^{\circ}$, to the nearest 0.1 of a degree.

The tangents to C at the points A and B meet at the point P.
(e) Find the length $A P$, giving your answer to 3 significant figures.

Question 4

The curve C has equation $y=12 \sqrt{ }(x)-x^{\frac{3}{2}}-10, \quad x>0$
(a) Use calculus to find the coordinates of the turning point on C.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(c) State the nature of the turning point.

Question 5

(a) Find the positive value of x such that

$$
\begin{equation*}
\log _{x} 64=2 \tag{2}
\end{equation*}
$$

(b) Solve for x

$$
\begin{equation*}
\log _{2}(11-6 x)=2 \log _{2}(x-1)+3 \tag{6}
\end{equation*}
$$

Question 6

(i) Find the exact solutions to the equations
(a) $\ln (3 x-7)=5$
(b) $3^{x} e^{7 x+2}=15$

Question 7

Figure 1
Figure 1 shows a sketch of the graph of $y=\mathrm{f}(x)$.
The graph intersects the y-axis at the point $(0,1)$ and the point $A(2,3)$ is the maximum turning point.
Sketch, on separate axes, the graphs of
(i) $y=\mathrm{f}(-\mathrm{x})+1$,
(ii) $y=f(x+2)+3$,
(iii) $y=2 f(2 x)$.

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed.

Question 8

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$.
The curve has a maximum point $(-2,5)$ and an asymptote $y=1$, as shown in Figure 1 .

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(x)+2$
(b) $y=4 \mathrm{f}(x)$
(c) $y=\mathrm{f}(x+1)$

On each diagram, show clearly the coordinates of the maximum point and the equation of the asymptote.
(Total 7 marks)

Question 9

Figure 2
The curve C has equation $y=x^{2}-5 x+4$. It cuts the x-axis at the points L and M as shown in Figure 2 .
(a) Find the coordinates of the point L and the point M.
(b) Show that the point $N(5,4)$ lies on C.
(c) Find $\int\left(x^{2}-5 x+4\right) \mathrm{d} x$.

The finite region R is bounded by $L N, L M$ and the curve C as shown in Figure 2.
(d) Use your answer to part (c) to find the exact value of the area of R.

Question 10

(a) Show that the equation

$$
\begin{array}{cc}
5 \sin x=1+2 \cos ^{2} x \\
\text { can be written in the form } & 2 \sin ^{2} x+5 \sin x-3=0
\end{array}
$$

(b) Solve, for $0 \leqslant x<360^{\circ}$,

$$
\begin{equation*}
2 \sin ^{2} x+5 \sin x-3=0 \tag{4}
\end{equation*}
$$

(Total 6 marks)

Question 11

In triangle $A B C, A B=(3-x), B C=(x-4)$ and angle $A B C=120^{\circ}$
(a) Show that $\mathrm{AC}^{2}=x^{2}-7 x+13$
(b) Find the value of x for which $A C$ has a minimum value

