Pure Mathematics 1 Practice Paper J8 MARK SCHEME

Q1.

Question number	Scheme	Marks	
(0)	(a) $m = \frac{4 - (-3)}{-6 - 8}$ or $\frac{-3 - 4}{8 - (-6)}$, $= \frac{7}{-14}$ or $\frac{-7}{14}$ $\left(= -\frac{1}{2} \right)$	M1, A1	
	Equation: $y-4=-\frac{1}{2}(x-(-6))$ or $y-(-3)=-\frac{1}{2}(x-8)$	M1	
	x + 2y - 2 = 0 (or equiv. with <u>integer</u> coefficients must have '= 0')	A1	(4)
	(e.g. $14y + 7x - 14 = 0$ and $14 - 7x - 14y = 0$ are acceptable)		
	(b) $(-6-8)^2 + (4-(-3))^2$	M1	
	$14^2 + 7^2$ or $(-14)^2 + 7^2$ or $14^2 + (-7)^2$ (M1 A1 may be implied by 245)	A1	
	$AB = \sqrt{14^2 + 7^2}$ or $\sqrt{7^2(2^2 + 1^2)}$ or $\sqrt{245}$		
	7√5	A1cso	(3) 7
2	(a) 1 st M: Attempt to use $m = \frac{y_2 - y_1}{x_2 - x_1}$ (may be implicit in an equation of L).	8	,
	2^{nd} M: Attempting straight line equation in any form, e.g. $y - y_1 = m(x - x_1)$,		
	$\frac{y-y_1}{x-x_1} = m$, with any value of m (except 0 or ∞) and either (-6, 4) or (8, -3)		
	N.B. It is also possible to use a different point which lies on the line, such as the midpoint of AB (1, 0.5).		
	Alternatively, the 2^{nd} M may be scored by using $y = mx + c$ with a numerical gradient and substituting $(-6, 4)$ or $(8, -3)$ to find the value of c .		
	Having coords the <u>wrong way round</u> , e.g. $y - (-6) = -\frac{1}{2}(x - 4)$, loses the		
	2^{nd} M mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$.		
	(b) M: Attempting to use $(x_2 - x_1)^2 + (y_2 - y_1)^2$.		
	Missing bracket, e.g. $-14^2 + 7^2$ implies M1 if no earlier version is seen.		
	 -14² + 7² with no further work would be M1 A0. -14² + 7² followed by 'recovery' can score full marks. 		

Ω2

Question Number	Scheme	Marks	5
(a)	$(x-6)^2 + (y-4)^2 = ; 3^2$	B1; B1 (2	2)
(b)	Complete method for MP : = $\sqrt{(12-6)^2 + (6-4)^2}$	М1	
	$=\sqrt{40}$ or awrt 6.325	A1	
	[These first two marks can be scored if seen as part of solution for (c)]		
	Complete method for $\cos \theta$, $\sin \theta$ or $\tan \theta$ e.g. $\cos \theta = \frac{MT}{MP} = \frac{3}{candidate' s \sqrt{40}}$ (= 0.4743) ($\theta = 61.6835^{\circ}$) [If TP = 6 is used, then M0]	М1	
	θ = 1.0766 rad AG	A1 (4))
(c)	Complete method for area <i>TMP</i> ; e.g. = $\frac{1}{2} \times 3 \times \sqrt{40} \sin \theta$	М1	
	$=\frac{3}{2}\sqrt{31}$ (= 8.3516) allow awrt 8.35	A1	
	Area (sector) $MTQ = 0.5 \times 3^2 \times 1.0766$ (= 4.8446)	M1	
	Area TPQ = candidate' s (8.3516 4.8446)	M1	
	= 3.507 awrt [Note: 3.51 is A0]	A1 (5)
Notes	(a) Allow 9 for 3 ² .		
	(b) First M1 can be implied by √ 40or √ 31		
	For second M1: May find TP = $\sqrt{(\sqrt{40})^2 - 3^2} = \sqrt{31}$, then either		
	$\sin \theta = \frac{TP}{MP} = \frac{\sqrt{31}}{\sqrt{40}}$ (= 0.8803) or $\tan \theta = \frac{\sqrt{31}}{3}$ (1.8859) or cos rule		
	NB. Answer is given, but allow final A1 if all previous work is correct.		
	(c) First M1: (alternative) $\frac{1}{2} \times 3 \times \sqrt{40 - 9}$		
	Second M1: allow even if candidate's value of θ used. (Despite being given!)		

www.naikermaths.com

03

Question Number	Scheme	Marks
(a)	(Total area) = $3xy + 2x^2$	B1
	(Vol:) $x^2y = 100$ $(y = \frac{100}{x^2}, xy = \frac{100}{x})$	B1
(b)	Deriving expression for area in terms of x only	M1
(5)	(Substitution, or clear use of, y or xy into expression for area)	
	$(Area =) \frac{300}{x} + 2x^2 \qquad AG$	A1 cso (4)
(c)	$\frac{\mathrm{d}A}{\mathrm{d}x} = -\frac{300}{x^2} + 4x$	M1A1
	Setting $\frac{dA}{dx} = 0$ and finding a value for correct power of x, for cand. M1	
	[$x^3 = 75$] $x = 4.2172$ awrt 4.22 (allow exact $\sqrt[3]{75}$)	A1 (4)
	$\frac{d^2A}{dx^2} = \frac{600}{x^3} + 4 = \text{positive}, > 0; \qquad \text{therefore minimum}$	M1;A1 (2)
(d)	Substituting found value of x into (a)	M1
(4)	(Or finding y for found x and substituting both in $3xy + 2x^2$)	
	$[y = \frac{100}{4.2172^2} = 5.6228]$	
	Area = 106.707 awrt 107	A1 (2) [12]
Notes	(a) First B1: Earned for correct unsimplified expression, isw.	
	(b) First M1: At least one power of x decreased by 1, and no "c" term.	
	(c) For M1: Find $\frac{d^2 A}{dx^2}$ and explicitly consider its sign, state > 0 or "positive"	
	A1: Candidate's $\frac{d^2 A}{dx^2}$ must be correct for their $\frac{dA}{dx}$, sign must be + ve	
	and conclusion "so minimum", (allow QED, $\sqrt{\ }$). (may be wrong x, or even no value of x found)	
	Alternative: M1: Find value of $\frac{dA}{dx}$ on either side of " $x = \sqrt[3]{75}$ " and consider sign	
	A1: Indicate sign change of negative to positive for $\frac{dA}{dx}$, and conclude	
	minimum. OP M1: Consider values of A on either side of "v = 3/75" and compare with "107"	
0	OR M1: Consider values of A on either side of " $x = \sqrt[3]{75}$ " and compare with "107" A1: Both values greater than " $x = 107$ " and conclude minimum. Allow marks for (c) and (d) where seen; even if part labelling confused. Throughout, allow confused notation, such as dy/dx for dA/dx.	

Q4.

Question number	Scheme	Marks	
	Shape (drawn anywhere) Minimum at (1, 0) (perhaps labelled 1 on x-axis) (-3,0) (or -3 shown on -ve x-axis) (0, 3) (or 3 shown on +ve y-axis) N.B. The max. can be anywhere.	B1	(4)
	(b) $y = (x+3)(x^2-2x+1)$	M1 A1cso	(2)
	(c) $\frac{dy}{dx} = 3x^2 + 2x - 5$	M1 A1	
	$3x^{2} + 2x - 5 = 3$ or $3x^{2} + 2x - 8 = 0$ (3x - 4)(x + 2) = 0 $x =x = \frac{4}{3} (or exact equiv.) , x = -2$	M1 M1 A1, A1	(6) 12
	 (a) The individual marks are independent, but the 2nd, 3rd and 4th B's are dependent upon a sketch having been attempted. B marks for coordinates: Allow (0, 1), etc. (coordinates the wrong way round) if marked in the correct place on the sketch. (b) M: Attempt to multiply out (x-1)² and write as a product with (x+3), or attempt to multiply out (x+3)(x-1) and write as a product with (x-1), or attempt to expand (x+3)(x-1)(x-1) directly (at least 7 terms). The (x-1)² or (x+3)(x-1) expansion must have 3 (or 4) terms, so should not, for example, be just x²+1. A: It is not necessary to state explicitly 'k = 3'. Condone missing brackets if the intention seems clear and a fully correct expansion is seen. (c) 1st M: Attempt to differentiate (correct power of x in at least one term). 2nd M: Attempt to solve a 3-term quadratic based on their derivative. The equation could come from dy/dx = 0. N.B. After an incorrect k value in (b), full marks are still possible in (c). 		

05	
	_
	~

ion Scheme er		Scheme		Marks
Method 1 (Substituting a = 3b into second equation	n at some stage)			
Heiner a law of laws compaths (ansaybare)	1 1-2	241		
		M1		
APP APP CONCUSTOR AND STORY CONFORMAL CONFESSION AND ADDRESS OF THE PROPERTY O		M1		
1 man 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1		M1		
First correct value	$b = \sqrt{3} \text{ (allow 3}^{5})$	A1		
Correct method to find other value (dep. on at leas	nac account ac	M1		
Second answer	$a = 3b = 3 \sqrt{3} \text{ or } \sqrt{27}$	A1		
Method 2 (Working with two equations in log ₃ a and	d log₃b)			
" Taking logs" of first equation and " separating"	$\log_3 a = \log_3 3 + \log_3 b$ $(= 1 + \log_3 b)$	М1		
Solving simultaneous equations to find $\log_3 a$ or $\log_3 a = 1\frac{1}{2}$, $\log_3 b = \frac{1}{2}$]	1 3 <i>b</i>	M1		
Using base correctly to find a or b		M1		
Correct value for a or b or $a = 3 \sqrt{3}$ or $b = \sqrt{3}$ Correct method for second answer, dep. on first M; correct second answer [Ignore negative values]				
				Answers must be exact; decimal answers lose both
There are several variations on Method 1, depending	ng on the stage at which			
a = 3b is used, but they should all mark as in schen	ne.			
In this method, the first three method marks on Epe	en are for			
(i) First M1: correct use of log law,				
(ii) Second M1: substitution of $a = 3b$,				
(iii) Third M1: requires using base correctly on	correctly derived log₃ p= q	1		
Three examples of applying first 4 marks in Method 1: (i) $log_3 3b + log_3 b = 2$ gains second M1				
$\log_3 3 + \log_3 b + \log_3 b = 2$ gains first M1				
$(2 \log_3 b = 1, \log_3 b = \frac{1}{2})$ no mark yet $b = 3^{\frac{1}{2}}$ gains third M1, and if correct A1				
(ii) $\log_3(ab) = 2$ gains first M1				
3				
3	# 20000 Person			
	154			
	Method 1 (Substituting a = 3b into second equation Using a law of logs correctly (anywhere) Substitution of $3b$ for a (or $a/3$ for b) Using base correctly on correctly derived $\log_3 p = q$ First correct value Correct method to find other value (dep. on at least Second answer Method 2 (Working with two equations in $\log_3 a$ and "Taking $\log_3 a$ " of first equation and "separating" Solving simultaneous equations to find $\log_3 a$ or $\log_3 a = 1\frac{1}{2}$, $\log_3 b = \frac{1}{2}$ [Using base correctly to find a or b Correct value for a or b are Correct wellowed for second answer, dep. on first M; [Ignore negative values] Answers must be exact; decimal answers lose both There are several variations on Method 1, dependin $a = 3b$ is used, but they should all mark as in schere In this method, the first three method marks on Eper (i) First M1: correct use of $\log_3 a$ (iii) Second M1: substitution of $a = 3b$, (iii) Third M1: requires using base correctly on $\frac{1}{2} \log_3 3b + \log_3 b = 2$ gains first M1 ($2\log_3 3b + \log_3 b = 2$ gains second M1 $\log_3 3b + \log_3 b = 2$ gains first M1 ($2\log_3 b = 1$, $\log_3 b + \log_3 b = 2$ gains first M1 ($2\log_3 b = 1$, $\log_3 b = 2$) $\log_3 a$ gains third M1, and (ii) $\log_3 (ab) = 2$ gains first M1 gains third M1, and $\log_3 (ab) = 2$ gains first M1 gains third M1 and $\log_3 3b = 3^2$ gains second M1 has gained first 2 M as gained first 2	Method 1 (Substituting a = 3b into second equation at some stage) Using a law of logs correctly (anywhere) e.g. $\log_3 ab = 2$ Substitution of $3b$ for a (or $a/3$ for b) e.g. $\log_3 3b^2 = 2$ Using base correctly on correctly derived $\log_3 p = q$ e.g. $3b^2 = 3^2$ First correct value $b = \sqrt{3}$ (allow 3^{50}) Correct method to find other value (dep. on at least first M mark) Second answer $a = 3b = 3\sqrt{3}$ or $\sqrt{27}$ Method 2 (Working with two equations in $\log_3 a$ and $\log_3 b$) " Taking \log_3 " of first equation and " separating" $\log_3 a = \log_3 3 + \log_3 b$ (= $1 + \log_3 b$) Solving simultaneous equations to find $\log_3 a$ or $\log_3 b$ (= $1 + \log_3 b$) Solving simultaneous equations to find $\log_3 a$ or $\log_3 b$ (= $1 + \log_3 b$) Correct value for a or b $a = 3\sqrt{3}$ or $b = \sqrt{3}$ Correct method for second answer, dep. on first M; correct second answer [Ignore negative values] Answers must be exact; decimal answers lose both A marks There are several variations on Method 1, depending on the stage at which $a = 3b$ is used, but they should all mark as in scheme. In this method, the first three method marks on Epen are for (i) First M1: correct use of log law, (ii) Second M1: substitution of $a = 3b$, (iii) Third M1: requires using base correctly on correctly derived $\log_3 p = q$. Three examples of applying first 4 marks in Method 1: $\log_3 b + \log_3 b + \log_3 b = 2$ gains second M1 (2 $\log_3 b + \log_3 b + \log_3 b = 2$ gains second M1 (2 $\log_3 b + \log_3 b $		

www.naikermaths.com

06

Question number	Scheme		Marks	
0		Shape: Max in 1 st quadrant and 2 intersections on positive x-axis	B1	
		1 and 4 labelled (in correct place) or clearly stated as coordinates	B1	
		(2, 10) labelled or clearly stated	B1	(3)
	1280.50	Shape: Max in 2nd quadrant and 2 intersections on negative x-axis	B1	
		-1 and -4 labelled (in correct place)	D1	
		or clearly stated as coordinates	B1	
	-4/ -1	(-2, 5) labelled or clearly stated	B1	(3)
	(c) (a =) 2 Beware: The answer to part (c) may be se	May be implicit, i.e. $f(x+2)$	B1	(1)
		1.0		7
55	(a) and (b):			
	1st B: 'Shape' is generous, providing the con-	ditions are satisfied.		
	2^{nd} and $3^{\text{rd}}B$ marks are dependent upon a ske	etch having been drawn.		
	2 nd B marks: Allow (0, 1), etc. (coordinates the correct.	he wrong way round) <u>if</u> the sketch is		
	Points must be labelled correctly and be in ap first quadrant is B0).	opropriate place (e.g. (-2, 5) in the		
	(b) Special case: If the graph is reflected in the x-axis (instead of scored). This requires shape and coordinate Shape: Minimum in 4 th quadrant and special of the score			
	1 and 4 labelled (in correct place) or clear (2, −5) labelled or clearly stated.	ly stated as coordinates,		

Q7.

Question Number	Scheme	Marks
(a)	Either solving $0 = x(6 - x)$ and showing $x = 6$ (and $x = 0$)	B1 (1)
	or showing (6,0) (and $x = 0$) satisfies $y = 6x - x^2$ [allow for showing $x = 6$]	
(b)	Solving $2x = 6x - x^2$ $(x^2 = 4x)$ to $x =$	M1
	x = 4 (and x = 0)	A1
	Conclusion: when $x = 4$, $y = 8$ and when $x = 0$, $y = 0$,	A1 (3)
(c)	(Area =) $\int_{(0)}^{(4)} (6x - x^2) dx$ Limits not required	М1
	Correct integration $3x^2 - \frac{x^3}{3}$ (+ c)	A1
	Correct use of correct limits on their result above (see notes on limits)	M1
	$[" 3x^2 - \frac{x^3}{3}"]^4 - [" 3x^2 - \frac{x^3}{3}"]_0 \text{ with limits substituted } [= 48 - 21\frac{1}{3} = 26\frac{2}{3}]$	
	Area of triangle = 2 × 8 =16 (Can be awarded even if no M scored, i.e. B1)	A1
	Shaded area = ± (area under curve - area of triangle) applied correctly	M1
	$(=26\frac{2}{3}-16) = 10\frac{2}{3}$ (awrt 10.7)	A1 (6)[10

Notes	(b) In scheme first A1: need only give x = 4
	If verifying approach used:
	Verifying (4,8) satisfies both the line and the curve M1(attempt at both),
	Both shown successfully A1
	For final A1, (0,0) needs to be mentioned; accept " clear from diagram"
	(c) Alternative Using Area = $\pm \int_{(0)}^{(4)} \{(6x - x^2); -2x\} dx$ approach
	(i) If candidate integrates separately can be marked as main scheme
	If combine to work with = $\pm \int_{(0)}^{(4)} (4x - x^2) dx$, first M mark and third M mark
	= (±) $[2x^2 - \frac{x^3}{3} (+c)]$ A1,
	Correct use of correct limits on their result second M1,
	Totally correct, unsimplified ± expression (may be implied by correct ans.) A1 10% A1 [Allow this if, having given - 10%, they correct it]
	M1 for correct use of correct limits: Must substitute correct limits for their
	strategy into a changed expression and subtract, either way round, e.g $\pm \{ []^4 - []_0 \}$
	If a long method is used, e,g, finding three areas, this mark only gained for
	correct strategy and all limits need to be correct for this strategy.
	Final M1: limits for area under curve and triangle must be the same.
	S.C.(1) $\int_0^6 (6x-x^2)dx - \int_0^6 2xdx = \left[3x^2 - \frac{x^3}{3}\right]_0^6 - \left[x^2\right]_0^6 = \dots$ award M1A1
	MO(limits)AO(triangle)M1(bod)A0
	(2) If, having found ± correct answer, thinks this is not complete strategy and does more, do not award final 2 A marks
	Use of trapezium rule: M0A0MA0possibleA1for triangle M1(if correct application of trap. rule from $x = 0$ to $x = 4$) A0

Q8.

Question Number	Scheme	
(a)	$3\sin^2\theta - 2\cos^2\theta = 1$	
	$3 \sin^2 \theta - 2 (1 - \sin^2 \theta) = 1$ (M1: Use of $\sin^2 \theta + \cos^2 \theta = 1$)	M1
	$3\sin^2\theta - 2 + 2\sin^2\theta = 1$	
	$5 \sin^2 \theta = 3$ cso AG	A1 (2)
(b)	$\sin^2\theta = \frac{3}{5}$, so $\sin\theta = (\pm)\sqrt{0.6}$	M1
	Attempt to solve both $\sin \theta = +$ and $\sin \theta =$ (may be implied by later work)	M1
	θ = 50.7685° awrt θ = 50.8° (dependent on first M1 only)	A1
	$\theta \ (=180^{\circ} - 50.7685_{c} \circ); = 129.23 \circ \text{ awrt } 129.2^{\circ}$	M1; A1 √
	[f.t. dependent on first M and 3rd M]	
	$\sin \theta = -\sqrt{0.6}$	
	θ = 230.785° and 309.23152° awrt 230.8°, 309.2° (both)	M1A1 (7)
		[9]

Notes:

- (a) N.B: AG; need to see at least one line of working after substituting $\cos^2\theta$
- (b) First M1: Using $5\sin^2\theta = 3$ to find value for $\sin\theta$ or θ

[Allow such results as
$$\sin \theta = \frac{3}{5}$$
, $\sin \theta = \frac{\sqrt{3}}{5}$ for M1]

Second M1: Considering the – value for $\sin \theta$. (usually later)

First A1: Given for awrt 50.8°. Not dependent on second M.

Third M1: For (180 - candidate' s 50.8)°, need not see written down

Final M1: Dependent on second M (but may be implied by answers)

For (180 + candidate' s 50.8)° or (360 - candidate' s 50.8)° or equiv.

Final A1: Requires both values. (no follow through)

[Finds $\cos^2 \theta = k$ (k = 2/5) and so $\cos \theta = (\pm)$...M1, then mark equivalently]

NB Candidates who only consider positive value for sin θ

can score max of 4 marks: M1M0A1M1A1M0A0 - Very common.

Candidates who score first M1 but have wrong sin θ can score maximum

M1M1A0M1A√ M1A0

SC Candidates who obtain one value from each set, e.g 50.8 and 309.2

M1M1(bod)A1M0A0M1(bod)A0

Extra values out of range - no penalty

Any very tricky or " outside scheme methods", send to TL

Q9.

Question Number	Scheme	Marks
	B 700m A 150	
(a)	$BC^2 = 700^2 + 500^2 - 2 \times 500 \times 700 \cos 15^\circ$ (= 63851.92) BC = 253 awrt	M1 A1 A1 (3)
(b)	$\frac{\sin B}{700} = \frac{\sin 15}{\text{candidate's } BC}$ $\sin B = \sin 15 \times 700 / 253_c = 0.716 \text{ and giving an obtuse } B (134.2^\circ) \text{ dep on } 1^{\text{st}} \text{ M}$ $\theta = 180^\circ - \text{candidate's angle } B (\text{Dep. on first M only, B can be acute})$ $\theta = 180 - 134.2 = (0)45.8 (\text{allow } 46 \text{ or awrt } 45.7, 45.8, 45.9)$	M1 M1 M1 A1 (4) [7]
Notes:	(a) If use cos 15° =, then A1 not scored until written as BC² = correctly Splitting into 2 triangles BAX and CAX, where X is foot of perp. from B to AC Finding value for BX and CX and using Pythagoras M1 BC² = (500 sin 15°)² + (700 - 500 cos 15°)² A1 BC = 253 awrt A1 (b) Several alternative methods: (Showing the M marks, 3 rd M dep. on first M)) (i) cos B = \frac{500² + candidate'sBC² - 700²}{2x500xcandidate'sBC} \text{ or } 700² = 500² + BC_e² - 2x500xBC_e M1 Finding angle B M1 dep., then M1 as above (ii) 2 triangle approach, as defined in notes for (a)	
	$\tan CBX = \frac{700 - value for AX}{value for BX} \qquad \qquad M1$ $Finding value for \angle CBX \ (\approx 59 ^{\circ}) \qquad dep \qquad M1$ $\theta = [180^{\circ} - (75^{\circ} + candidate's \angle CBX)] \qquad M1$ (iii) Using sine rule (or cos rule) to find C first: $Correct use of sine or cos rule for C \qquad M1, \qquad Finding value for C \qquad M1$ $Either \ B = 180^{\circ} - (15^{\circ} + candidate's C) or \theta = (15^{\circ} + candidate's C) M1$ (iv) $700\cos 15^{\circ} = 500 + BC\cos \theta \qquad M2 \{first two Ms earned in this case\}$ $Solving for \ \theta; \theta = 45.8 (allow 46 \text{ or } 5.7, 45.8, 45.9) M1; A1$ Note: S.C. In main scheme, if \theta used in place of B, third M gained immediately; $Other two marks likely to be earned, too, for correct value of \theta stated.$	

Q10

Question Number	Scheme	0	Mark	s
	(a) 1000		B1	(1)
	(b) $1000 \mathrm{e}^{-5730c} = 500$		M1	
	$e^{-5730c} = \frac{1}{2}$		A1	
	$-5730c = \ln\frac{1}{2}$		M1	
	c = 0.000121	cao	A1	(4)
	(c) $R = 1000 \mathrm{e}^{-22920c} = 62.5$	Accept 62-63	M1 A1	(2)
	(d)			
		Shape 1000	B1 B1	(2) [9]

\sim	4	4	
(.)	1	1	

Q	Scheme	Marks
	States or implies the formula for differentiation from first principles.	
	$f(x)$: $3x^3$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	Correctly applies the formula to the specific formula and expands and simplifies the formula.	M1
	$f'(x) = \lim_{h \to 0} \frac{3(x+h)^3 - 3x^3}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{3(x^3 + 3x^2h + 3xh^2 + h^3) - 3x^3}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{9 x^2 h + 9 x h^2 + 3h^3}{h}$	
	Factorises the ' h ' out of the numerator and then divides by h to simplify.	A1
	$f'(x) = \lim_{h \to 0} \frac{h(9x^2 + 9xh + 3h^2)}{h}$	
	$f'(x) = \lim_{h \to 0} \left(9x^2 + 9xh + 3h^2 \right)$	
	States that as $h \to 0$, $9x^2 + 9xh + 3h^2 \to 9x^2$ o.e. so derivative = $9x^2$ *	A1*

Q12.

Q	Scheme	
(a)	Gradient = $\frac{4.55-2.3}{120}$ = 0.1875	
	Creating $\log P = \log a + t \log b$	M1
	Sub 2.3 and 0.1875 in above equation	
	Equation of line: log P = 0.1875 t + 2.3 (accept 0.19 as gradient)	A1
(b)	$\log a = 2.3$ $a = 10^{2.3} = 199.526$	M1
	$a = 10^{-6} - 199.526$ = 200 (3 S.F)	A1
	$\log b = 0.1875$	M1
	$b = 10^{0.1875} = 1.5399$ = 1.54 (3 S.F)	A1
(c)	The initial population of bacteria	A1
(d)	Sub $t = 20$, $a = 200$, $b = 1.54$ in $P = ab^t$ $= 200(1.54)^{20}$	M1
	= 1125756.368 = 1126000 (nearest 1000)	A1