Pure Mathematics 1 Practice Paper J9 MARK SCHEME

Question 1

Question Number	Scheme Marks
(a) (b)	$b^{2}-4 a c>0 \Rightarrow 16-4 k(5-k)>0$ or equiv., e.g. $16>4 k(5-k)$ So $\quad k^{2}-5 k+4>0$ (Allow any order of terms, e.g. $4-5 k+k^{2}>0$) Critical Values $\begin{aligned} (k-4)(k-1)= & k=\ldots \\ k= & 1 \text { or } 4 \\ & k<1 \text { or } k>4 \end{aligned}$ Choosing "outside" region
(a)	For this question, ignore (a) and (b) labels and award marks wherever correct work is seen. M1 for attempting to use the discriminant of the initial equation (>0 not required, but substitution of a, b and c in the correct formula is required). If the formula $b^{2}-4 a c$ is seen, at least 2 of a, b and c must be correct. If the formula $b^{2}-4 a c$ is not seen, all 3 (a, b and c) must be correct. This mark can still be scored if substitution in $b^{2}-4 a c$ is within the quadratic formula. This mark can also be scored by comparing b^{2} and $4 a c$ (with substitution). However, use of $b^{2}+4 a c$ is M0. $1^{\text {st }}$ A1 for fully correct expression, possibly unsimplified, with $>$ symbol. NB must appear before the last line, even if this is simply in a statement such as $b^{2}-4 a c>0$ or 'discriminant positive'. Condone a bracketing slip, e.g. $16-4 \times k \times 5-k$ if subsequent work is correct and convincing. $2^{\text {nd }} \mathrm{A} 1$ for a fully correct derivation with no incorrect working seen. Condone a bracketing slip if otherwise correct and convincing. Using $\sqrt{b^{2}-4 a c}>0$: Only available mark is the first M1 (unless recovery is seen). $1^{\text {st }}$ M1 for attempt to solve an appropriate 3TQ $1^{\text {st }} \mathrm{A} 1$ for both $k=1$ and 4 (only the critical values are required, so accept, e.g. $k>1$ and $k>4$). $2^{\text {nd }}$ M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark... listing everything $k<1,1<k<4, k>4$ is M0. $2^{\text {nd }}$ A1 for correct answer only, condone " $k<1, k>4$ " and even " $k<1$ and $k>4$ ", but " $1>k>4$ " is A0. Often the statement $k>1$ and $k>4$ is followed by the correct final answer. Allow full marks. Seeing 1 and 4 used as critical values gives the first M1 A1 by implication. In part (b), condone working with x^{\prime} 's except for the final mark, where the set of values must be a set of values of k (i.e. 3 marks out of 4). Use of \leq (or \geq) in the final answer loses the final mark.

Question 2.

Question Number	Scheme	Marks
(a) (b)	$\begin{aligned} & \left.2 x^{3 / 2} \quad \text { or } p=\frac{3}{2} \quad \text { Not } 2 x \sqrt{x}\right) \\ & -x \text { or }-x^{1} \text { or } q=1 \\ & \left.\begin{array}{rl} \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right. & = \end{array}\right) 20 x^{3}+2 \times \frac{3}{2} x^{1 / 2}-1 \\ & \quad=20 x^{3}+3 x^{\frac{1}{2}}-1 \end{aligned}$	B1 B1 (2) M1 A1A1ftA1ft (4) [6]
(a)	$1^{3 t} \mathrm{~B} 1 \quad$ for $p=1.5$ or exact equivalent $2^{\text {nd }} \mathrm{B} 1 \quad$ for $q=1$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 4 terms) $1^{\text {st }}$ A1 for $20 x^{3}$ (the -3 must 'disappear') $2^{\text {nd }}$ Alft for $3 x^{\frac{1}{2}}$ or $3 \sqrt{x}$. Follow through their p but they must be differentiating $2 x^{p}$. where p is a fraction, and the coefficient must be simplified if necessary. $3^{\text {rd }}$ Alft for -1 (not the unsimplified $-x^{0}$), or follow through for correct differentiation of their $-x^{q}$ (i.e. coefficient of x^{q} is -1). If ft is applied, the coefficient must be simplified if necessary. 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single + or - sign is allowed (e.g. - must be replaced by +). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Multiplying by \sqrt{x} : (assuming this is a restart) e.g. $y=5 x^{4} \sqrt{x}-3 \sqrt{x}+2 x^{2}-x^{3 / 2}$ $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{45}{2} x^{7 / 2}-\frac{3}{2} x^{-1 / 2}+4 x-\frac{3}{2} x^{1 / 2} \text { scores M1 A0 A0 (} p \text { not a fraction) A1ft. }$ Extra term included: This invalidates the final mark. $\begin{aligned} & \text { e.g. } y=5 x^{4}-3+2 x^{2}-x^{3 / 2}-x^{1 / 2} \\ & \left(\frac{d y}{\mathrm{~d} x}=\right) 20 x^{3}+4 x-\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2} \text { scores M1 A1 A0 (} p \text { not a fraction) A0. } \end{aligned}$ Numerator and denominator differentiated separately: For this, neither of the last two (ft) marks should be awarded. Quotient/product rule: Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

Question 3.

Question Ilumber	Scheme	Marks
(a) (b) Alt for (a)	$P Q: m_{1}=\frac{10-2}{9-(-3)}\left(=\frac{2}{3}\right)$ and $Q R: m_{2}=\frac{10-4}{9-a}$	M1
	$\begin{equation*} m_{1} m_{2}=-1: \quad \frac{8}{12} \times \frac{6}{9-a}=-1 \quad a=13 \tag{*} \end{equation*}$ (a) Alternative method (Pythagoras) Finds all three of the following $(9-(-3))^{2}+(10-2)^{2} \cdot(\text { i.e. } 208) \cdot(9-a)^{2}+(10-4)^{2} \cdot \quad(a-(-3))^{2}+(4-2)^{2}$	M1 A1 (3) M1
	Using Pythagoras (correct way around) e.g. $a^{2}+6 a+9=240+a^{2}-18 a+81$ to form equation Solve (or verify) for $a, a=13\left(^{*}\right)$ (b) Centre is at $(5,3)$	M1 A1 (3)
	$\begin{aligned} & \left(r^{2}=\right)(10-3)^{2}+(9-5)^{2} \text { or equiv, or }\left(d^{2}=\right)(13-(-3))^{2}+(4-2)^{2} \\ & (x-5)^{2}+(y-3)^{2}=65 \quad \text { or } x^{2}+y^{2}-10 x-6 y-31=0 \end{aligned}$	M1 A1 M1 A1 (5)
Alt for (b)	Uses $(x-a)^{2}+(y-b)^{2}=r^{2}$ or $x^{2}+y^{2}+2 g x+2 f y+c=0$ and substitutes $(-3,2),(9,10)$ and $(13,4)$ then eliminates one unknown Eliminates second unknown	M1 M1
	Obtains $g=-5, f=-3, c=-31$ or $a=5, b=3, r^{2}=65$	$\mathrm{A} 1, \mathrm{~A} 1 \text {, }$ B1cao (5) [8]

(a) M1-considers gradients of $P Q$ and $Q R$-must be y difference $/ x$ difference (or considers three lengths as in alternative method)
Ml Substitutes gradients into product $=-1$ (or lengths into Pythagoras Theorem the correct way round)
Al Obtains $a=13$ with no errors by solution or verification. Verification can score $3 / 3$
(b) Geometrical method: B1 for coordinates of centre - can be implied by use in part (b)

Ml for attempt to find r^{2}, d^{2}, r or d (allow one slip in a bracket)
Al cao. These two marks may be gained implicitly from circle equation
Ml for $(x \pm 5)^{2}+(y \pm 3)^{2}=k^{2}$ or $(x \pm 3)^{2}+(y \pm 5)^{2}=k^{2}$ ft their $(5,3)$ Allow k^{2} non numerical.
Al cao for whole equation and rhs must be 65 or $(\sqrt{65})^{2}$. (similarly B1 must be 65 or
$(\sqrt{65})^{2}$, in alternative method for (b))

Question 4.

Question Number	Scheme	Marks
(a) (b) (c) (d)	$y-5=-\frac{1}{2}(x-2) \quad$ or equivalent, e.g. $\frac{y-5}{x-2}=-\frac{1}{2}, \quad y=-\frac{1}{2} x+6$ $x=-2 \Rightarrow y=-\frac{1}{2}(-2)+6=7$ (therefore B lies on the line) (or equivalent verification methods) $\begin{align*} & \left(A B^{2}=\right)(2--2)^{2}+(7-5)^{2}, \quad=16+4=20, \quad A B=\sqrt{20}=2 \sqrt{5} \tag{1}\\ & C \text { is }\left(p,-\frac{1}{2} p+6\right) \text {, so } \quad A C^{2}=(p-2)^{2}+\left(-\frac{1}{2} p+6-5\right)^{2} \end{align*}$ Therefore $\quad 25=p^{2}-4 p+4+\frac{1}{4} p^{2}-p+1$ $25=1.25 p^{2}-5 p+5$ or $100=5 p^{2}-20 p+20$ (or better, RHS simplified to 3 terms) Leading to: $\quad 0=p^{2}-4 p-16 \quad\left({ }^{*}\right)$	M1A1, A1cao (3) M1, A1, A1 (3) M1 M1 A1 A1cso (4) [11]
(a) (b) (c) (d)	M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. $\left.y-y_{1}=m\left(x-x_{1}\right)\right)$ is seen, otherwise M0. If $(2,5)$ is substituted into $y=m x+c$ to find c, the M mark is for attempting this and the $1^{\text {th }} \mathrm{A}$ mark is for $c=6$. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a), or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting $A B^{2}$ or $A B$. Allow one slip (sign or number) inside a bracket, ie. do not allow $(2--2)^{2}-(7-5)^{2}$. $1^{\text {st }}$ A1 for 20 (condone bracketing slips such as $-2^{2}=4$) $2^{\text {nd }} \mathrm{A} 1$ for $2 \sqrt{5}$ or $k=2$ (Ignore \pm here). $1^{\text {st }} \mathrm{M} 1$ for $(p-2)^{2}+$ (linear function of $\left.p\right)^{2}$. The linear function may be unsimplified but must be equivalent to $a p+b, a \neq 0, b \neq 0$. $2^{\text {nd }}$ M1 (dependent on $1^{\text {st }} \mathrm{M}$) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. $1^{\text {st }} \mathrm{A} 1$ for collecting like p terms and having a correct expression. $2^{\text {nd }} \mathrm{A} 1$ for correct work leading to printed answer. Alternative, using the result: Solve the quadratic $(p=2 \pm 2 \sqrt{5})$ and use one or both of the two solutions to find the length of $A C^{2}$ or $C_{1} C_{2}{ }^{2}$: e.g. $A C^{2}=(2+2 \sqrt{5}-2)^{2}+(5-\sqrt{5}-5)^{2}$ scores $1^{\text {th }} \mathrm{M} 1$, and $1^{\text {st }} \mathrm{A} 1$ if fully correct. Finding the length of $A C$ or $A C^{2}$ for both values of p, or finding $C_{1} C_{2}$ with some evidence of halving (or intending to halve) scores the $2^{\text {nd }}$ M1. Getting $A C=5$ for both values of p, or showing $\frac{1}{2} C_{1} C_{2}=5$ scores the $2^{\text {nd }} \mathrm{A} 1$ (cso).	

Question 5.

(a) $1^{\text {st }}$ M1 for 4 or $8 x^{-2}$ (ignore the signs).
$1^{\text {st }} \mathrm{A} 1$ for both terms correct (including signs).
$2^{\text {nd }}$ M1 for substituting $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (must be different from their y)
B1 for $y_{P}=-3$, but not if clearly found from the given equation of the tangent,
$3^{\text {rd }} \mathrm{M} 1$ for attempt to find the equation of tangent at P, follow through their m and y_{P}.
Apply general principles for straight line equations (see end of scheme).
NO DIFFERENTIATION ATTEMPTED: Just assuming $m=-2$ at this stage is M0
$2^{\text {nd }}$ Alcso for correct work leading to printed answer (allow equivalents with $2 x, y$, and 1 terms...
such as $2 x+y-1=0$).
(b) B1ft for correct use of the perpendicular gradient rule. Follow through their m, but if $m \neq-2$ there must be clear evidence that the m is thought to be the gradient of the tangent.
M1 for an attempt to find normal at P using their changed gradient and their y_{P}. Apply general principles for straight line equations (see end of scheme).
A1 for any correct form as specified above (correct answer only).
(c)
$1^{\text {st }} \mathrm{B} 1$ for $\frac{1}{2}$ and $2^{\text {nd }} \mathrm{B} 1$ for 8.
M1 for a full method for the area of triangle $A B P$. Follow through their x_{A}, x_{B} and their y_{p}, but the mark is to be awarded 'generously', condoning sign errors..
The final answer must be positive for A1, with negatives in the working condoned.
Determinant: Area $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1\end{array}\right|=\ldots$ (Attempt to multiply out required for M1)
Alternative: $A P=\sqrt{(2-0.5)^{2}+(-3)^{2}}, B P=\sqrt{(2-8)^{2}+(-3)^{2}}$, Area $=\frac{1}{2} A P \times B P=\ldots \quad$ M1
Intersections with y-axis instead of x-axis: Only the M mark is available B0 B0 M1 A0.

Question 6.

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks

\hline (a)
(b)

(c) \& | $2 \pi r h+2 \pi r^{2}=800$ |
| :--- |
| B1 |
| $h=\frac{400-\pi r^{2}}{\pi r}, \quad V=\pi r^{2}\left(\frac{400-\pi r^{2}}{\pi r}\right)=400 r-\pi r^{3}$ |
| M1, M1 A1 |
| $\frac{\mathrm{d} V}{\mathrm{~d} r}=400-3 \pi r^{2}$ |
| M1 A1 |
| $400-3 \pi \quad r^{2}=0 \quad r^{2}=\ldots, \quad r=\sqrt{\frac{400}{3 \pi}} \quad(=6.5(2$ s.f. $))$ $\begin{equation*} V=400 r-\pi r^{3}=1737=\frac{800}{3} \sqrt{\frac{400}{3 \pi}}\left(\mathrm{~cm}^{3}\right) \tag{6} \end{equation*}$ |
| (accept awrt 1737 or exact answer) |
| $\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=-6 \pi r$, Negative, \therefore maximum |
| (Parts (b) and (c) should be considered together when marking) |

\hline | Other |
| :--- |
| methods |
| for part |
| (c): | \& | Either.M: Find value of $\frac{\mathrm{d} V}{\mathrm{~d} r}$ on each side of " $r=\sqrt{\frac{400}{3 \pi}}$ " and consider sign. |
| :--- |
| A: Indicate sign change of positive to negative for $\frac{d V}{d r}$, and conclude max. Or:M: Find value of V on each side of " $r=\sqrt{\frac{400}{3 \pi}}$ " and compare with "1737". |
| A: Indicate that both values are less than 1737 or 1737.25 , and conclude max. |

\hline | Notes |
| :--- |
| (a) |
| (b) | \& | B1: For any correct form of this equation (may be unsimplified, may be implied by $1^{\text {tt }}$ M1) |
| :--- |
| M1 : Making h the subject of their three or four term formula |
| M1: Substituting expression for h into $\pi r^{2} h$ (independent mark) Must now be expression in r only. |
| Al: cso |
| M1: At least one power of r decreased by 1 Al : cao |
| Ml: Setting $\frac{\mathrm{d} V}{\mathrm{~d} r}=0$ and finding a value for correct power of r for candidate |
| Al : This mark may be credited if the value of V is correct. Otherwise answers should round to 6.5 (allow |
| ± 6.5) or be exact answer |
| M1: Substitute a positive value of r to give V Al: 1737 or $1737.25 \ldots$. or exact answer |

\hline
\end{tabular}

(c)	Ml: needs complete method e.g.attempts differentiation (power reduced) of their first derivative and considers its sign Al(first method) should be $-6 \pi r$ r if found in (b)) Need to conclude maximum or indicate by a tick that it is maximum. Throughout allow confused notation such as dy/dx for $\mathrm{d} V / \mathrm{d} r$
Altornative	
for (a) to substitute r and can condone wrong	
$A=2 \pi r^{2}+2 \pi r h, \frac{4}{2} \times r=\pi r^{3}+\pi r^{2} h \quad$ is M1 Equate to $400 r \quad$ B1	
Then $V=400 r-\pi r^{3}$ is Ml Al	

Question 7.

Question Number	Scheme	Marks
	$\begin{array}{ll} 2 \log _{5} x=\log _{5}\left(x^{2}\right), & \log _{5}(4-x)-\log _{5}\left(x^{2}\right)=\log _{5} \frac{4-x}{x^{2}} \\ \log \left(\frac{4-x}{x^{2}}\right)=\log 5 & 5 x^{2}+x-4=0 \text { or } 5 x^{2}+x=4 \text { o.e. } \\ (5 x-4)(x+1)=0 & x=\frac{4}{5} \end{array} \quad(x=-1) \quad \$$	B1, M1 M1 A1 dM1 A1 (6) [6]
Notes	B1 is awarded for $2 \log x=\log x^{2}$ anywhere. M1 for correct use of $\log A-\log B=\log \frac{A}{B}$ M1 for replacing 1 by $\log _{k} k$. Al for correct quadratic $\left(\log (4-x)-\log x^{2}=\log 5 \Rightarrow 4-x-x^{2}=5\right. \text { is BIM0M1A0 M0A0) }$ dM1 for attempt to solve quadratic with usual conventions. (Only award M marks have been awarded) Al for $4 / 5$ or 0.8 or equivalent (Ignore extra answer).	f previous two
Alternative 1	$\begin{aligned} & \log _{5}(4-x)-1=2 \log _{5} x \text { so } \log _{5}(4-x)-\log _{5} 5=2 \log _{5} x \\ & \log _{5} \frac{4-x}{5}=2 \log _{5} x \end{aligned}$ then could complete solution with $2 \log _{5} x=\log _{5}\left(x^{2}\right)$ $\left(\frac{4-x}{5}\right)=x^{2} \quad 5 x^{2}+x-4=0$ Then as in first method $(5 x-4)(x+1)=0 \quad x=\frac{4}{5} \quad(x=-1)$	M1 M1 B1 A1 dM1 A1 (6)
Special cases	Complete trial and error yielding 0.8 is M3 and Bl for 0.8 Al, Al awarded for each of two tries evaluated. i.e. $6 / 6$ Incomplete trial and error with wrong or no solution is $0 / 6$ Just answer 0.8 with no working is B1	

Question 8.

| Q | | Scheme | Marks | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (a) | | | | |

Question 9.

Question Number	Scheme	Marks
	$\begin{aligned} &(\mathrm{f}(x)=) \frac{3 x^{3}}{3}-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-7 x(+c) \\ &=x^{3}-2 x^{\frac{3}{2}}-7 x \quad(+c) \\ & \mathrm{f}(4)=22 \Rightarrow \quad 22=64-16-28+c \\ & c=2 \end{aligned}$	M1 A1A1 M1 Alcso (5) [5]
	$1^{\text {st }}$ M1 for an attempt to integrate (x^{3} or $x^{\frac{3}{2}}$ seen). The x term is insufficient for this mark and similarly the $+c$ is insufficient. $1^{\text {st }}$ A1 for $\frac{3}{3} x^{3}$ or $-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) $2^{\text {nd }}$ A1 for all three x terms correct and simplified... (the simplification may be seen later). The $+c$ is not required for this mark. Allow $-7 x^{1}$, but not $-\frac{7 x^{1}}{1}$. for an attempt to use $x=4$ and $y=22$ in a changed function (even if differentiated) to form an equation in c. $3^{\text {rd }}$ A1 for $c=2$ with no earlier incorrect work (a final expression for $\mathrm{f}(x)$ is not required).	

www.naikermaths.com

Question 10.

Question Number	Scheme ${ }^{\text {a }}$ Marks
	$y=(1+x)(4-x)=4+3 x-x^{2}$ M: Expand, giving 3 (or 4) terms $\int\left(4+3 x-x^{2}\right) \mathrm{d} x=4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}$ M1 $=[\ldots \ldots \ldots \ldots]_{-1}^{4}=\left(16+24-\frac{64}{3}\right)-\left(-4+\frac{3}{2}+\frac{1}{3}\right)=\frac{125}{6} \quad\left(=20 \frac{5}{6}\right)$ M1 A1 M1 A1
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithmetical error e.g. $1 \times 4=5$, but there needs to be a 'constant' an ' x term' and an ' x^{2} term'. The x terms do not need to be collected. (Need not be seen if next line correct) Attempt to integrate means that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms, then M1 is awarded (even 4 becoming $4 x$ is sufficient) - one correct power sufficient. Al is for correct answer only, not follow through. But allow $2 x^{2}-\frac{1}{2} x^{2}$ or any correct equivalent. Allow $+c$, and even allow an evaluated extra constant term. M1: Substitute limit 4 and limit -1 into a changed function (must be -1) and indicate subtraction (either way round). Al must be exact, not 20.83 or similar. If recurring indicated can have the mark. Negative area, even if subsequently positive loses the A mark.
Special cases	(i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answer correct, so 0,1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus - $0 / 5$ unless expansion mark M1 gained. (iii) Using original method, but then change all signs after expansion is likely to lead to: M1 M1 A0, M1 A0 i.e. 3/5

Question 11.

Question Number	Scheme ${ }^{\text {a }}$ Marks
(a) (b)	
(a) (b)	M1: Uses $\sin ^{2} x=1-\cos ^{2} x$ (may omit bracket) not $\sin ^{2} x=\cos ^{2} x-1$ Al: Obtains the printed answer without error - must have $=0$ M1: Solves the quadratic with usual conventions A1: Obtains $1 / 4$ accurately-ignore extra answer 2 but penalise e.g. -2 . B1: allow answers which round to 75.5 M1: $360-\alpha \mathrm{ft}$ their value, M1: $360+\alpha \mathrm{ft}$ their value or $720-\alpha \mathrm{ft}$ Al: Three and only three correct exact answers in the range achieves the mark
Special cases	In part (b) Error in solving quadratic ($4 \cos x-1)(\cos x+2)$ Could yield, M1A0B1M1M1A1 losing one mark for the error Works in radians: Complete work in radians: Obtains 1.3 B0. Then allow M1 M1 for $2 \pi-\alpha, 2 \pi+\alpha$ or $4 \pi-\alpha$ Then gets $5.0,7.6,11.3 \mathrm{~A} 0$ so $2 / 4$ Mixed answer $1.3,360-1.3,360+1.3,720-1.3$ still gets B0M1M1A0

Q	Scheme	Marks
(a)	Starting proof by using the expansion of $(a+b)^{2}$ $(a+b)^{2}$ can also be written as $(a-b)^{2}+4 a b$ since $(a+b)^{2}=a^{2}+2 a b+b^{2}$ $=(a-b)^{2}+4 a b$ Since $(a-b)^{2} \geq 0$, Therefore $(a+b)^{2} \geq 4 a b$ (since both a and b are positive) Take square root on both sides $(a+b)>\sqrt{4 a b}$	M1 A1 A1
(b)	If $a=-1$ and $b=-1$ this will give $-2>\sqrt{4}$ which is not true M1 for using 2 negative values A1 for showing their values make the inequality false	M1A1

Question 13.

Q	Scheme	Marks
(a)	$\begin{aligned} & H(t)=0 \\ & 15.25+17.8 t-4.5 t^{2}=0 \\ & t=\frac{-17.8 \pm \sqrt{17.8^{2}-4(-4.5)(15.25)}}{2(-4.5)} \\ & t=-0.72 \text { or } 4.68 \\ & t=4.68 \mathrm{~s} \end{aligned}$	M1A1 A1 (3)
(b)	$\begin{aligned} & H(t)=-4.5\left[t^{2}-\frac{17.8}{4.5}-\frac{15.25}{4.5}\right] \\ & H(t)=-4.5\left[\left(t-\frac{17.8}{9.0}\right)^{2}-\left(\frac{17.8}{9.0}\right)^{2}-\frac{15.25}{4.5}\right] \\ & H(t)=\frac{29567}{900}-4.5\left(t-\frac{89}{45}\right)^{2} \\ & A=\frac{29567}{900}=32.85 \\ & B=4.5 \\ & C=\frac{89}{45}=1.98 \end{aligned}$ $1^{\text {st }} \mathrm{A} 1 \text { for } 32.85$ $2^{\text {nd }} \mathrm{A} 1 \text { for both } 4.5 \text { and } 1.98$	M1 A1 A1 (3)
(c)	Max height $=32.85$ Time $=\frac{89}{45}$ or 1.98 s	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$ (2)

