Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper M10

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 13 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

(a) Show that $x^{2}+6 x+11$ can be written as $(x+p)^{2}+q$ where p and q are integers to be found.
(b) In the space at the top of page 7 , sketch the curve with equation $y=x^{2}+6 x+11$, showing clearly any intersections with the coordinate axes.
(c) Find the value of the discriminant of $x^{2}+6 x+11$

Question 2

(a) Simplify fully

$$
\begin{equation*}
\frac{2 x^{2}+9 x-5}{x^{2}+2 x-15} \tag{3}
\end{equation*}
$$

Given that

$$
\ln \left(2 x^{2}+9 x-5\right)=1+\ln \left(x^{2}+2 x-15\right), \quad x \neq-5
$$

(b) find x in terms of e.

Question 3

(a) On the axes below sketch the graphs of
(i) $y=x(4-x)$
(ii) $y=x^{2}(7-x)$
showing clearly the coordinates of the points where the curves cross the coordinate axes.
(b) Show that the x-coordinates of the points of intersection of
$y=x(4-x)$ and $y=x^{2}(7-x)$
are given by the solutions to the equation $x\left(x^{2}-8 x+4\right)=0$

The point A lies on both of the curves and the x and y coordinates of A are both positive.
(c) Find the exact coordinates of A, leaving your answer in the form ($p+q \sqrt{ } 3, r+s \sqrt{3})$, where p, q, r and s are integers.

Question 4

(a) Find an equation of the line joining $A(7,4)$ and $B(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(b) Find the length of $A B$, leaving your answer in surd form.

The point C has coordinates $(2, t)$, where $t>0$, and $A C=A B$.
(c) Find the value of t.
(d) Find the area of triangle $A B C$.

Question 5

The circle C has centre $A(2,1)$ and passes through the point $B(10,7)$.
(a) Find an equation for C.

The line l_{1} is the tangent to C at the point B.
(b) Find an equation for $/ 1$.

The line I_{2} is parallel to l_{1} and passes through the mid-point of $A B$.
Given that I_{2} intersects C at the points P and Q,
(c) find the length of $P Q$, giving your answer in its simplest surd form.

Question 6

The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x-\frac{5}{\sqrt{x}}-2
$$

Given that the point $P(4,5)$ lies on C, find
(a) $f(x)$,
(b) an equation of the tangent to C at the point P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

$$
y=x^{2}-k \sqrt{ } x, \quad \text { where } k \text { is a constant. }
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Given that y is decreasing at $x=4$, find the set of possible values of k.

Question 8

Figure 2
Figure 2 shows a sketch of part of the curve C with equation

$$
y=x^{3}-10 x^{2}+k x
$$

where k is a constant.
The point P on C is the maximum turning point.
Given that the x-coordinate of P is 2 ,
(a) show that $k=28$.

The line through P parallel to the x-axis cuts the y-axis at the point N.
The region R is bounded by C, the y-axis and $P N$, as shown shaded in Figure 2.
(b) Use calculus to find the exact area of R.

Question 9

(a) Given that

$$
\begin{equation*}
2 \log _{3}(x-5)-\log _{3}(2 x-13)=1 \tag{5}
\end{equation*}
$$

show that $x^{2}-16 x+64=0$.

$$
2 \log _{3}(x-5)-\log _{3}(2 x-13)=1
$$

Question 10

(a) Given that $5 \sin \theta=2 \cos \theta$, find the value of $\tan \theta$.
(b) Solve, for $0 \leq x<360^{\circ}$,
$5 \sin 2 x=2 \cos 2 x$,
giving your answers to 1 decimal place.

Question 11

Given that $|4 \mathbf{i}-2 k \boldsymbol{j}|=|3 k \boldsymbol{i}-2 \boldsymbol{j}|$, find the exact value of the positive constant k.

Question 12

Prove that the sum of two rational numbers is also a rational number

Question 13

The curve with equation $y=\frac{1}{5} x(10-x)$ is used to model the arc of a bridge over a road, where x and y are distances in metres, with the origin as shown in Fig. 12.1. The x-axis represents the road surface.

Fig. 12.1
(i) State the value of x at A, where the arc meets the road.
(ii) Using symmetry, or otherwise, state the value of x at the maximum point B on the graph. Hence find the height of the arch.
(iii) Fig. 12.2 shows a lorry which is 4 m high and 3 m wide, with its cross-section modelled as a rectangle. Find the value of d when the lorry is in the centre of the road. Hence show that the lorry can pass through this arch.

Fig. 12.2
(iv) Another lorry, also modelled as having a rectangular cross-section, has height 4.5 m and just touches the arch when it is in the centre of the road. Find the width of this lorry, giving your answer in surd form

