Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper M9

Time: $\mathbf{2}$ hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 14 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

Giving your answer in set notation, find the set of values of x for which
(a) $4 x-3>7-x$
(b) $2 x^{2}-5 x-12<0$
(c) both $4 x-3>7-x$ and $2 x^{2}-5 x-12<0$
(Total 7 marks)

Question 2

The equation $x^{2}+3 p x+p=0$, where p is a non-zero constant, has equal roots.
Find the value of p.

Question 3

The curve C has equation

$$
y=x^{3}-2 x^{2}-x+9, \quad x>0
$$

The point P has coordinates $(2,7)$.
(a) Show that P lies on C.
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

The point Q also lies on C.
Given that the tangent to C at Q is perpendicular to the tangent to C at P,
(c) show that the x-coordinate of Q is $\frac{1}{3}(2+\sqrt{6})$.

Question 4

(a) Factorise completely $x^{3}-6 x^{2}+9 x$
(b) Sketch the curve with equation

$$
y=x^{3}-6 x^{2}+9 x
$$

showing the coordinates of the points at which the curve meets the x-axis.
Using your answer to part (b), or otherwise,
(c) sketch, on a separate diagram, the curve with equation

$$
y=(x-2)^{3}-6(x-2)^{2}+9(x-2)
$$

showing the coordinates of the points at which the curve meets the x-axis.

Question 5

Figure 1
The points A and B have coordinates $(6,7)$ and $(8,2)$ respectively.
The line / passes through the point A and is perpendicular to the line $A B$, as shown in Figure 1.
(a) Find an equation for $/$ in the form $a x+b y+c=0$, where a, b and c are integers.

Given that / intersects the y-axis at the point C, find
(b) the coordinates of C,
(c) the area of $\triangle O C B$, where O is the origin.

Question 6

The circle C has equation
$x^{2}+y^{2}-6 x+4 y=12$
(a) Find the centre and the radius of C.

The point $P(-1,1)$ and the point $Q(7,-5)$ both lie on C.
(b) Show that $P Q$ is a diameter of C.

The point R lies on the positive y-axis and the angle $P R Q=90^{\circ}$.
(c) Find the coordinates of R.

Question 7

(a) Find the value of y such that

$$
\begin{equation*}
\log _{2} y=-3 \tag{2}
\end{equation*}
$$

(b) Find the values of x such that

$$
\frac{\log _{2} 32+\log _{2} 16}{\log _{2} x}=\log _{2} x
$$

Question 8

Rabbits were introduced onto an island. The number of rabbits, P, t years after they were introduced is modelled by the equation

$$
P=80 \mathrm{e}^{\frac{1}{5} t}, \quad t \in \mathbb{R}, t \geqslant 0
$$

(a) Write down the number of rabbits that were introduced to the island.
(b) Find the number of years it would take for the number of rabbits to first exceed 1000.
(c) Find $\frac{\mathrm{d} P}{\mathrm{~d} t}=50$.
(d) Find P when $\frac{\mathrm{d} P}{\mathrm{~d} t}=50$.

Question 9

(i) Solve, for $-180^{\circ} \leq \theta<180^{\circ}$,

$$
\begin{equation*}
(1+\tan \theta)(5 \sin \theta-2)=0 . \tag{4}
\end{equation*}
$$

(ii) Solve, for $0 \leq x<360^{\circ}$,

$$
\begin{equation*}
4 \sin x=3 \tan x \text {. } \tag{6}
\end{equation*}
$$

Question 10

Use calculus to find the value of

$$
\begin{equation*}
\int_{1}^{4}(2 x+3 \sqrt{ } x) \mathrm{d} x \tag{5}
\end{equation*}
$$

Question 11

Sketch the gradient function for the following graph stating clearly the coordinates of any turning points and where the graph cuts the axes.

(Total 3 marks)

Question 12

Find the set of values for which $\frac{2}{x+3}<5$, for which $x \neq-3$
(Total 6 marks)

Question 13

Figure 1

The graph of $\log _{10} y$ against x is a straight line as shown in Figure 1
(i) Find the equation for $\log _{10} y$ in terms of x
(ii) Find the equation for y in terms of x

Question 14

Two forces F_{1} and F_{2} are given by the vectors $F_{1}=(-3 i-4 j) N$ and $F_{2}=(p i-3 p j) N$. The resultant of the forces F_{1} and F_{2}, \mathbf{R} acts in a direction which is parallel to the vector ($3 \mathrm{i}-4 \mathrm{j}$).
(i) Show that $\mathrm{p}=-\frac{24}{5}$
(ii) Find the resultant force \mathbf{R}
(iii) Find the angle between \mathbf{R} and the vector \mathbf{i} to the nearest degree

