

Solving Differential Equations - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q8

Question Number	Scheme	Marks	5
	(a) $\frac{dV}{dt}$ is the rate of increase of volume (with respect to time)	B1	
	$-kV$: k is constant of proportionality and the negative shows decrease (or loss) giving $\frac{dV}{dt} = 20 - kV$	B1	
	(b) $\int \frac{1}{20 - kV} dV = \int 1 dt$ separating variables	- M1	(2)
	$-\frac{1}{k}\ln(20-kV) = t (+C)$	M1 A1	
	Using $V = 0$, $t = 0$ to evaluate the constant of integration	M1	
	$c = -\frac{1}{k} \ln 20$ $t = \frac{1}{k} \ln \left(\frac{20}{20 - kV} \right)$		
	Obtaining answer in the form $V = A + Be^{-kt}$	M1	
	$V = \frac{20}{k} - \frac{20}{k} e^{-kt}$ Accept $\frac{20}{k} (1 - e^{-kt})$	A1	(6)
	(c) $\frac{\mathrm{d}V}{\mathrm{d}t} = 20 \mathrm{e}^{-kt}$ Can be implied	M1	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 10, t = 5 \Rightarrow 10 = 20 \mathrm{e}^{-kt} \Rightarrow k = \frac{1}{5} \ln 2 \approx 0.139$	M1 A1	
	At $t = 10$, $V = \frac{75}{\ln 2}$ awrt 108	M1 A1	(5)
	Alternative to (b)		[13]
	Using printed answer and differentiating $\frac{dV}{dt} = -kB e^{-kt}$	M1	
	Substituting into differential equation $-kBe^{-kt} = 20 - kA - kBe^{-kt}$	M1	
	$A = \frac{20}{k}$	M1 A1	
	Using $V = 0$, $t = 0$ in printed answer to obtain $A + B = 0$	M1	
	$B = -\frac{20}{k}$	A1	(6)

Question 2: Jan 06 Q7

1	<u> </u>		
(a)	$\frac{dV}{dr} = 4\pi r^2$	B1	(1)
(b)	Uses $\frac{dr}{dt} = \frac{dV}{dt} \cdot \frac{dr}{dV}$ in any form, $=\frac{1000}{4\pi r^2 (2t+1)^2}$	M1,A1	(2)
(c)	$V = \int 1000(2t+1)^{-2} dt \text{ and integrate to } p(2t+1)^{-1}, = -500(2t+1)^{-1}(+c)$	M1, A1	
	Using V=0 when t=0 to find c , (c = 500 , or equivalent)	M1	
	$\therefore V = 500(1 - \frac{1}{2t+1}) \qquad \text{(any form)}$	A1	(4)
(d)	(i) Substitute t = 5 to give V,	M1,	
	then use $r = \sqrt[3]{\left(\frac{3V}{4\pi}\right)}$ to give $r_{+} = 4.77$	M1, A1	(3)
	(ii) Substitutes t = 5 and r = 'their value' into 'their' part (b)	M1	
	$\frac{dr}{dt} = 0.0289 (\approx 2.90 x 10^{-2}) \text{ (cm/s)} * AG$	A1	(2)
			[12]

Question 3: June 06 Q7

Question Number	Scheme		Marks
(a)	From question, $\frac{dS}{dt} = 8$	$\frac{dS}{dt} = 8$	B1
	$S = 6x^2 \implies \frac{dS}{dx} = 12x$	$\frac{dS}{dx} = 12x$	B1
	$\frac{dx}{dt} = \frac{dS}{dt} \div \frac{dS}{dx} = \frac{8}{12x}; = \frac{\frac{2}{3}}{x} \implies (k = \frac{2}{3})$	Candidate's $\frac{dS}{dt} \div \frac{dS}{dx}$; $\frac{8}{12x}$	M1; <u>A1</u> oe
			[4]
(b)	$V = x^3 \implies \frac{dV}{dx} = 3x^2$	$\frac{dV}{dx} = 3x^2$	B1
	$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 3x^2 \cdot \left(\frac{2}{3x}\right); = 2x$	Candidate's $\frac{dV}{dx} \times \frac{dx}{dt}$; λx	M1; A1√
	As $x = V^{\frac{1}{3}}$, then $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ AG	Use of $x = V^{\frac{1}{3}}$, to give $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	A1 [4]
(c)	$\int \frac{dV}{V^{\frac{1}{3}}} = \int 2 dt$	Separates the variables with $\int \frac{dV}{V^{\frac{1}{3}}} \text{or } \int V^{-\frac{1}{3}} dV \text{ on one side and}$ $\int 2 \ dt \text{ on the other side.}$	B1
	$\int V^{-\frac{1}{3}} dV = \int 2 dt$	integral signs not necessary.	
	$\int \frac{dV}{V^{\frac{1}{3}}} = \int 2 dt$ $\int V^{-\frac{1}{3}} dV = \int 2 dt$ $\frac{3}{2}V^{\frac{2}{3}} = 2t \ (+c)$	Attempts to integrate and must see $V^{\frac{2}{3}}$ and 2t; Correct equation with/without + c.	M1; A1
	$\frac{3}{2}(8)^{\frac{2}{3}} = 2(0) + c \implies c = 6$	Use of V = 8 and t = 0 in a changed equation containing c; $c = 6$	M1*; A1
	Hence: $\frac{3}{2}V^{\frac{2}{3}} = 2t + 6$		
	$\frac{3}{2}\left(16\sqrt{2}\right)^{\frac{2}{3}} = 2t + 6 \qquad \Rightarrow 12 = 2t + 6$	Having found their "c" candidate substitutes $V = 16\sqrt{2}$ into an equation involving V, t and "c".	depM1*
	giving t = 3.	t = 3	A1 cao [7]
			15 marks

Question 4: Jan 07 Q4

Question Number	Scheme		Marks
4. (a)	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$		
	$2x-1 \equiv A(2x-3) + B(x-1)$	Forming this identity. NB : A & B are not assigned in this question	M1
	Let $x = \frac{3}{2}$, $2 = B(\frac{1}{2}) \Rightarrow B = 4$		
	Let $x = 1$, $1 = A(-1) \Rightarrow A = -1$	either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$		
	(\(\lambda - 1\) (\(2\lambda - 3\)		[3]
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	$y = 10, x = 2$ gives $c = \ln 10$	c = In10	B1
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + \ln 10$		
	$ln y = -ln(x-1) + ln(2x-3)^2 + ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{(x-1)} \right) + \ln 10 \text{or}$ $\ln y = \ln \left(\frac{10(2x-3)^2}{(x-1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)} \text{ or aef. isw}$	A1 aef
	(x – 1)	(x – 1)	[4]
			12 marks

Question 5: June 07 Q8

Number	Scheme		Marks
(a)	$\frac{\mathrm{d}P}{\mathrm{d}t} = kP \text{and} t = 0, \ P = P_0 (1)$		
	$\int \frac{\mathrm{d}P}{P} = \int k \mathrm{d}t$	Separates the variables with $\int \frac{dP}{P}$ and $\int k dt$ on either side with integral signs not necessary.	M1
	lnP = kt; (+c)	Must see In P and kt; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \ln P_0 = c$ (or $P = Ae^{kt} \implies P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\ln P = kt + \ln P_0 \implies e^{\ln P} = e^{kt + \ln P_0} = e^{kt} \cdot e^{\ln P_0}$		
	Hence, $P = P_0 e^{kt}$	$\underline{P} = P_0 e^{kt}$	A1 [4]
(b)	$P = 2P_0 \& k = 2.5 \implies 2P_0 = P_0 e^{2.5t}$	Substitutes $P = 2P_0$ into an expression involving P	M1
	$e^{2.5t} = 2 \implies \underline{\ln e^{2.5t} = \ln 2}$ or $\underline{2.5t = \ln 2}$ or $e^{kt} = 2 \implies \underline{\ln e^{kt} = \ln 2}$ or $\underline{kt = \ln 2}$	Eliminates P_0 and takes In of both sides	M1
	$\Rightarrow t = \frac{1}{2.5} \ln 2 = 0.277258872 \text{ days}$		
	$t = 0.277258872 \times 24 \times 60 = 399.252776$ minutes		
	t = 399 min or $t = 6 hr 39 mins$ (to nearest minute)	awrt $t = 399$ or 6 hr 39 mins	A1 [3]

(c)	$\frac{dP}{dt} = \lambda P \cos \lambda t \text{and} t = 0, \ P = P_0 (1)$		
	$\int \frac{\mathrm{d}P}{P} = \int \lambda \cos \lambda t \mathrm{d}t$	Separates the variables with $\int \frac{\mathrm{d}P}{P}$ and $\int \lambda \cos \lambda t \mathrm{d}t$ on either side with integral signs not necessary.	M1
	$\ln P = \sin \lambda t; (+c)$	Must see $\ln P$ and $\sin \lambda t$; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \ln P_0 = c$ (or $P = Ae^{\sin \lambda t} \implies P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\ln P = \sin \lambda t + \ln P_0 \implies e^{\ln P} = e^{\sin \lambda t + \ln P_0} = e^{\sin \lambda t} \cdot e^{\ln P_0}$		
	Hence, $P = P_0 e^{\sin \lambda t}$	$P = P_0 e^{\sin \lambda t}$	A1 [4]
(d)	$P = 2P_0 \& \lambda = 2.5 \implies 2P_0 = P_0 e^{\sin 2.5t}$		
	$e^{\sin 2.5t} = 2 \Rightarrow \underline{\sin 2.5t} = \ln 2$ or $e^{\lambda t} = 2 \Rightarrow \underline{\sin \lambda t} = \ln 2$	Eliminates P_0 and makes $\sin \lambda t$ or $\sin 2.5t$ the subject by taking ln's	M1
	$t = \frac{1}{2.5} \sin^{-1}(\ln 2)$	Then rearranges to make <i>t</i> the subject. (must use sin ⁻¹)	dM1
	t = 0.306338477	(must use siii)	
	$t = 0.306338477 \times 24 \times 60 = 441.1274082$ minutes		
	t = 441min or $t = 7$ hr 21 mins (to nearest minute)	$awrt t = \underline{441} \text{ or}$ $\underline{7 \text{ hr } 21 \text{ mins}}$	A1
			[3]
			14 IIIaiks

 $P = P_0 e^{\sin xt}$ written down without the first M1 mark given scores all four marks in part (c).

	$\frac{\mathrm{d}P}{\mathrm{d}t} = kP \text{and} t = 0, \ P = P_0 (1)$		
Aliter (a) Way 2	$\int \frac{dP}{kP} = \int 1 dt$	Separates the variables with $\int \frac{\mathrm{d}P}{kP}$ and $\int \mathrm{d}t$ on either side with integral signs not necessary.	M1
	$\frac{1}{k} \ln P = t; (+c)$	Must see $\frac{1}{k} \ln P$ and t ; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \frac{1}{k} \ln P_0 = c$ (or $P = Ae^{kt} \implies P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\frac{1}{k}\ln P = t + \frac{1}{k}\ln P_0 \implies \ln P = kt + \ln P_0$ $\Rightarrow e^{\ln P} = e^{kt + \ln P_0} = e^{kt} \cdot e^{\ln P_0}$		
	Hence, $P = P_0 e^{kt}$	$P = P_0 e^{kt}$	A1 [4]
Aliter (a) Way 3	$\int \frac{\mathrm{d}P}{kP} = \int 1 \mathrm{d}t$	Separates the variables with $\int \frac{dP}{kP}$ and $\int dt$ on either side with integral signs not necessary.	M1
	$\frac{1}{k}\ln(kP) = t; (+c)$	Must see $\frac{1}{k} ln(kP)$ and t ; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \frac{1}{k} \ln(kP_0) = c$ (or $kP = Ae^{kt} \implies kP_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\frac{1}{k}\ln(kP) = t + \frac{1}{k}\ln(kP_0) \implies \ln(kP) = kt + \ln(kP_0)$ $\implies e^{\ln(kP)} = e^{kt + \ln(kP_0)} = e^{kt} \cdot e^{\ln(kP_0)}$		
	$\Rightarrow kP = e^{kt} \cdot (kP_0) \Rightarrow kP = kP_0 e^{kt}$ (or $kP = kP_0 e^{kt}$)		
	Hence, $P = P_0 e^{kt}$	$P = P_0 e^{kt}$	A1 [4]

	$\frac{dP}{dt} = \lambda P \cos \lambda t \text{and} t = 0, \ P = P_0 (1)$	\$65 6	
Aliter (c) Way 2	$\int \frac{\mathrm{d}P}{\lambda P} = \int \cos \lambda t \mathrm{d}t$	Separates the variables with $\int \frac{\mathrm{d}P}{\lambda P}$ and $\int \cos\lambda t\mathrm{d}t\mathrm{on}$ either side with integral signs not necessary.	M1
	$\frac{1}{\lambda} \ln P = \frac{1}{\lambda} \sin \lambda t; (+c)$	Must see $\frac{1}{\lambda} \ln P$ and $\frac{1}{\lambda} \sin \lambda t$; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \Rightarrow \frac{1}{\lambda} \ln P_0 = c$ (or $P = Ae^{\sin \lambda t} \Rightarrow P_0 = A$) $\frac{1}{\lambda} \ln P = \frac{1}{\lambda} \sin \lambda t + \frac{1}{\lambda} \ln P_0 \Rightarrow \ln P = \sin \lambda t + \ln P_0$	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\Rightarrow e^{\ln P} = e^{\sin \lambda t + \ln P_0} = e^{\sin \lambda t} \cdot e^{\ln P_0}$ Hence, $P = P_0 e^{\sin \lambda t}$	$P = P_0 e^{\sin \lambda t}$	A1
	\$67357740 <u>5 </u>		[4]

 $P = P_0 e^{kt}$ written down without the first M1 mark given scores all four marks in part (a).

 $P = P_0 e^{\sin x}$ written down without the first M1 mark given scores all four marks in part (c).

	$\frac{dP}{dt} = \lambda P \cos \lambda t \text{and} t = 0, \ P = P_0 (1)$		
Aliter (c) Way 3	$\int \frac{\mathrm{d}P}{\lambda P} = \int \cos \lambda t \mathrm{d}t$	Separates the variables with $\int \frac{\mathrm{d}P}{\lambda P}$ and $\int \cos\lambda t\mathrm{d}t$ on either side with integral signs not necessary.	M1
	$\frac{1}{\lambda}\ln(\lambda P) = \frac{1}{\lambda}\sin\lambda t; (+c)$	Must see $\frac{1}{\lambda} \ln(\lambda P)$ and $\frac{1}{\lambda} \sin \lambda t$; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \frac{1}{\lambda} \ln(\lambda P_0) = c$ (or $\lambda P = Ae^{\sin \lambda t} \implies \lambda P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\frac{1}{\lambda}\ln(\lambda P) = \frac{1}{\lambda}\sin\lambda t + \frac{1}{\lambda}\ln(\lambda P_0)$		
	$\Rightarrow \ln(\lambda P) = \sin \lambda t + \ln(\lambda P_0)$		
	$\Rightarrow e^{\ln(\lambda P)} = e^{\sin \lambda t + \ln(\lambda P_0)} = e^{\sin \lambda t} \cdot e^{\ln(\lambda P_0)}$		
	$\Rightarrow \lambda P = e^{\sin \lambda t} . (\lambda P_0)$ (or $\lambda P = \lambda P_0 e^{\sin \lambda t}$)		
	Hence, $P = P_0 e^{\sin \lambda t}$	$P = P_0 e^{\sin \lambda t}$	A1 [4]

Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark.

ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.

depM1* denotes a method mark which is dependent upon the award of M1*.

ft denotes "follow through"

cao denotes "correct answer only"

aef denotes "any equivalent form"

Question 6: Jan 08 Q8

Question Number	Scheme	8	Marks
(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - c\sqrt{h} \text{or} \frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - k\sqrt{h} \;,$	Either of these statements	M1
	$(V = 4000h \implies) \frac{\mathrm{d}V}{\mathrm{d}h} = 4000$	$\frac{dV}{dh} = 4000 \text{ or } \frac{dh}{dV} = \frac{1}{4000}$	M1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\frac{\mathrm{d}V}{\mathrm{d}h}}$		
	Either, $\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	Convincing proof of $\frac{dh}{dt}$	
	or $\frac{dh}{dt} = \frac{1600 - k\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{k\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	Convincing proof of $\frac{1}{dt}$	1000
			[3]
(b)	When $h = 25$ water leaks out such that $\frac{dV}{dt} = 400$		
	$400 = c\sqrt{h} \Rightarrow 400 = c\sqrt{25} \Rightarrow 400 = c(5) \Rightarrow c = 80$		
	From above; $k = \frac{c}{4000} = \frac{80}{4000} = 0.02$ as required	Proof that $k = 0.02$	B1 AG
Aliter (b)	$400 = 4000k\sqrt{h}$		[1]
Way 2	$\Rightarrow 400 = 4000k\sqrt{25}$		
	$\Rightarrow 400 = k(20000) \Rightarrow k = \frac{400}{20000} = 0.02$	Using 400, 4000 and $h = 25$ or $\sqrt{h} = 5$. Proof that $k = 0.02$	B1 AG
	= 100 = N(20000) = N = 20000 = 0.02	or $\sqrt{n} = 3$. Proof that $\kappa = 0.02$	[1]
		Separates the variables with	
(c)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h} \implies \int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}} = \int dt$	$\int \frac{dh}{0.4 - k\sqrt{h}}$ and $\int dt$ on either side with integral signs not necessary.	M1 oe
	$\therefore \text{ time required} = \int_0^{100} \frac{1}{0.4 - 0.02 \sqrt{h}} dh = \frac{\div 0.02}{\div 0.02}$	with integral signs not necessary.	
	time required = $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh$	Correct proof	A1 AG
			[2]

Question Number	Scheme		Marks
(d)	$\int_0^{100} \frac{50}{20 - \sqrt{h}} dh \text{with substitution} h = (20 - x)^2$		
	$\frac{dh}{dx} = 2(20 - x)(-1)$ or $\frac{dh}{dx} = -2(20 - x)$	Correct $\frac{dh}{dx}$	B1 aef
	$h = (20 - x)^2 \Rightarrow \sqrt{h} = 20 - x \Rightarrow x = 20 - \sqrt{h}$	***	
	$\int \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \int \frac{50}{x} \cdot -2(20 - x) \mathrm{d}x$	$\pm \lambda \int \frac{20 - x}{x} dx \text{ or}$ $\pm \lambda \int \frac{20 - x}{20 - (20 - x)} dx$	M1
	$=100\int \frac{x-20}{x} dx$	where λ is a constant	
	$= 100 \int \left(1 - \frac{20}{x}\right) dx$		
	$=100(x-20\ln x) (+c)$	$\pm \alpha x \pm \beta \ln x \; ; \; \alpha, \beta \neq 0$ $100x - 2000 \ln x$	M1 A1
	change limits: when $h = 0$ then $x = 20$ and when $h = 100$ then $x = 10$		
	$\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \left[100 x - 2000 \ln x \right]_{20}^{10}$		
	or $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh = \left[100(20 - \sqrt{h}) - 2000 \ln(20 - \sqrt{h})\right]_0^{100}$	Correct use of limits, ie. putting them in the correct way round	
	$= (1000 - 2000 \ln 10) - (2000 - 2000 \ln 20)$	Either $x = 10$ and $x = 20$ or $h = 100$ and $h = 0$	ddM1
	$= 2000 \ln 20 - 2000 \ln 10 - 1000$	Combining logs to give 2000 ln 2 – 1000	
	$= 2000 \ln 2 - 1000$	or $-2000 \ln 2 - 1000$	Al aef
(e)	Time required = 2000 ln 2 - 1000 = 386.2943611 sec		[6
	= 386 seconds (nearest second)		
	= 6 minutes and 26 seconds (nearest second)	6 minutes, 26 seconds	B1 []
			13 mark

Question 7: Jan 10 Q5

Question Number	Scheme	Mark	(S
	(a) $\int \frac{9x+6}{x} dx = \int \left(9 + \frac{6}{x}\right) dx$ $= 9x + 6 \ln x (+C)$	M1	(2)
	(b) $\int \frac{1}{y^{\frac{1}{3}}} dy = \int \frac{9x+6}{x} dx$ Integral signs not necessary	B1	(2)
	$\int y^{-\frac{1}{3}} dy = \int \frac{9x+6}{x} dx$ $\frac{y^{\frac{2}{3}}}{\frac{2}{3}} = 9x + 6 \ln x \ (+C)$ $\pm ky^{\frac{2}{3}} = \text{their (a)}$	M1	
	$\frac{3}{2}y^{\frac{2}{3}} = 9x + 6\ln x \ (+C)$ ft their (a) y = 8, x = 1	A1ft	
	$\frac{3}{2}8^{\frac{2}{3}} = 9 + 6\ln 1 + C$ $C = -3$	M1 A1	
	$y^{\frac{2}{3}} = \frac{2}{3} (9x + 6 \ln x - 3)$ $y^{2} = (6x + 4 \ln x - 2)^{3} \left(= 8 (3x + 2 \ln x - 1)^{3} \right)$	A1	(6) [8]

Question 8: June 10 Q8

Question Number	Scheme	Marks
	(a) $\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48\pi - 0.6\pi h$	M1 A1
	$V = 9\pi h \implies \frac{\mathrm{d}V}{\mathrm{d}t} = 9\pi \frac{\mathrm{d}h}{\mathrm{d}t}$	B1
	$9\pi \frac{\mathrm{d}h}{\mathrm{d}t} = 0.48\pi - 0.6\pi h$	M1
	Leading to $75 \frac{dh}{dt} = 4 - 5h$ * cso	A1 (5)
	(b) $\int \frac{75}{4-5h} dh = \int 1 dt$ separating variables	M1
	$-15\ln(4-5h) = t \ (+C)$ -15\ln(4-5h) = t + C	M1 A1
	When $t = 0$, $h = 0.2$ -15 ln 3 = C	M1
	$t = 15 \ln 3 - 15 \ln (4 - 5h)$	
	When $h = 0.5$	
	$t = 15 \ln 3 - 15 \ln 1.5 = 15 \ln \left(\frac{3}{1.5}\right) = 15 \ln 2$ awrt 10.4	M1 A1
	Alternative for last 3 marks	
	$t = \left[-15 \ln \left(4 - 5h \right) \right]_{0.2}^{0.5}$	
	$=-15\ln 1.5+15\ln 3$	M1 M1
	$=15 \ln \left(\frac{3}{1.5}\right) = 15 \ln 2$ awrt 10.4	A1 (6)

Question 9: Jan11 Q3

Question Number	Scheme	Marks
(a)	$\frac{5}{(x-1)(3x+2)} = \frac{A}{x-1} + \frac{B}{3x+2}$ $5 = A(3x+2) + B(x-1)$	
	$5 = A(3x+2) + B(x-1)$ $x \to 1$ $5 = 5A \Rightarrow A = 1$	M1 A1
	$x \to -\frac{2}{3} \qquad \qquad 5 = -\frac{5}{3}B \implies B = -3$	A1 (3)
(b)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{x-1} - \frac{3}{3x+2}\right) dx$ $= \ln(x-1) - \ln(3x+2) (+C)$ ft constants	M1 A1ft A1ft
9 1		(3)
(c)	$\int \frac{5}{(x-1)(3x+2)} dx = \int \left(\frac{1}{y}\right) dy$	M1
	$\ln(x-1) - \ln(3x+2) = \ln y (+C)$	M1 A1
	$y = \frac{K(x-1)}{3x+2}$ depends on first two Ms in (c)	M1 dep
	Using $(2, 8)$ $8 = \frac{K}{8}$ depends on first two Ms in (c)	M1 dep
	$y = \frac{64(x-1)}{3x+2}$	A1 (6)
		[12]

Question 10: June 11 Q8

Question Number	Scheme	Marks
	(a) $\int (4y+3)^{-\frac{1}{2}} dx = \frac{(4y+3)^{\frac{1}{2}}}{(4)(\frac{1}{2})} + (+C)$ $\left(= \frac{1}{2}(4y+3)^{\frac{1}{2}} + C \right)$	M1 A1 (2)
	(b) $\int \frac{1}{\sqrt{(4y+3)}} dy = \int \frac{1}{x^2} dx$ $\int (4y+3)^{-\frac{1}{2}} dy = \int x^{-2} dx$	B1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x} (+C)$	M1
	Using $(-2, 1.5)$ $\frac{1}{2}(4 \times 1.5 + 3)^{\frac{1}{2}} = -\frac{1}{-2} + C$ leading to $C = 1$	M1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x}+1$ $(4y+3)^{\frac{1}{2}} = 2 - \frac{2}{x}$	- M1
	$y = \frac{1}{4} \left(2 - \frac{2}{x} \right)^2 - \frac{3}{4}$ or equivalent	A1 (6) [8]