Question 1: June 05 Q8

Question 2: Jan 06 Q7

(a)	$\frac{d V}{d r}=4 \pi r^{2}$	B1 (1)
(b)	Uses $\frac{d r}{d t}=\frac{d V}{d t} \cdot \frac{d r}{d V} \quad$ in any form, $\quad=\frac{1000}{4 \pi r^{2}(2 t+1)^{2}}$	M1,A1 (2)
(c)	$V=\int 1000(2 t+1)^{-2} d t$ and integrate to $p(2 t+1)^{-1}, \quad=-500(2 t+1)^{-1}(+c)$ Using $\mathrm{V}=0$ when $\mathrm{t}=0$ to find $\mathrm{c}, \quad(\mathrm{c}=500$, or equivalent)	$\begin{aligned} & \text { M1, A1 } \\ & \text { M1 } \end{aligned}$
	$\therefore V=500\left(1-\frac{1}{2 t+1}\right) \quad$ (any form)	A1 (4)
(d)	(i) Substitute $\mathrm{t}=5$ to give V , then use $r=\sqrt[3]{\left(\frac{3 V}{4 \pi}\right)}$ to give $r,=4.77$	M1, M1, A1 (3)
	(ii) Substitutes $\mathrm{t}=5$ and $\mathrm{r}=$ 'their value' into 'their' part (b)	M1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.0289 \quad\left(\approx 2.90 \times 10^{-2}\right)(\mathrm{cm} / \mathrm{s}) * \quad \mathrm{AG}$	$\begin{array}{lr}\text { A1 } & \\ \\ & \text { [2) } \\ \end{array}$

Question 3: June 06 Q7

Question 4: Jan 07 Q4

Question Number	Scheme		Marks
4. (a)	$\frac{2 x-1}{(x-1)(2 x-3)} \equiv \frac{A}{(x-1)}+\frac{B}{(2 x-3)}$		
	$2 x-1 \equiv A(2 x-3)+B(x-1)$ Let $x=\frac{3}{2}, \quad 2=B\left(\frac{1}{2}\right) \Rightarrow B=4$	Forming this identity. NB: A \& B are not assigned in this question	M1
	Let $\mathrm{x}=1, \quad 1=\mathrm{A}(-1) \quad \Rightarrow \mathrm{A}=-1$	either one of $A=-1$ or $B=4$. both correct for their A, B.	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{Al} \end{aligned}$
	giving $\frac{-1}{(x-1)}+\frac{4}{(2 x-3)}$		
(b) \& (c)	$\int \frac{d y}{y}=\int \frac{(2 x-1)}{(2 x-3)(x-1)} d x$	Separates variables as shown Can be implied	B1
	$=\int \frac{-1}{(x-1)}+\frac{4}{(2 x-3)} d x$	Replaces RHS with their partial fraction to be integrated.	M1 $\sqrt{ }$
	$\therefore \ln y=-\ln (x-1)+2 \ln (2 x-3)+c$	At least two terms in ln's At least two ln terms correct All three terms correct and ' +c '	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { A1 } \end{aligned}$
	$y=10, x=2$ gives $c=\ln 10$	$\mathrm{c}=\ln 10$	B1
	$\therefore \ln y=-\ln (x-1)+2 \ln (2 x-3)+\ln 10$		
	$\ln y=-\ln (x-1)+\ln (2 x-3)^{2}+\ln 10$	Using the power law for logarithms	M1
	$\begin{aligned} & \ln y=\ln \left(\frac{(2 x-3)^{2}}{(x-1)}\right)+\ln 10 \text { or } \\ & \qquad \ln y=\ln \left(\frac{10(2 x-3)^{2}}{(x-1)}\right) \end{aligned}$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c .	M1
	$y=\frac{10(2 x-3)^{2}}{(x-1)}$	$y=\frac{10(2 x-3)^{2}}{(x-1)}$ or aef. isw	A1 aef
			[4]
			12 marks

Question 5: June 07 Q8

(c)	$\begin{aligned} & \frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t \quad \text { and } \quad t=0, P=P_{0} \\ & \int \frac{\mathrm{~d} P}{P}=\int \lambda \cos \lambda t \mathrm{~d} t \\ & \ln P=\sin \lambda t ;(+c) \\ & \text { When } t=0, P=P_{0} \Rightarrow \ln P_{0}=c \\ & \left(\text { or } P=A e^{\sin \lambda t} \Rightarrow P_{0}=A\right) \\ & \ln P=\sin \lambda t+\ln P_{0} \quad \Rightarrow e^{\ln P}=e^{\sin \lambda t+\ln P_{0}}=e^{\sin \lambda t} \cdot e^{\ln F_{0}} \end{aligned}$ Hence, $P=P_{0} e^{\text {shit }}$	Separates the variables with $\int \frac{\mathrm{d} P}{P}$ and $\int \lambda \cos \lambda t \mathrm{~d} t$ on either side with integral signs not necessary. Must see $\ln P$ and $\sin \lambda t$; Correct equation with/without + C. Use of boundary condition (1) to attempt to find the constant of integration. $P=P_{0} e^{\sin 2 t}$	A1 M1 A1 [4]
(d)	$\begin{aligned} & P=2 P_{0} \& \lambda=2.5 \Rightarrow 2 P_{0}=P_{0} e^{s \mathrm{sn} 2.5 t} \\ & e^{\sin 2.5 t}=2 \Rightarrow \underline{\sin 2.5 t=\ln 2} \\ & \ldots \text { or } \ldots e^{3 t}=2 \Rightarrow \underline{\sin \lambda t=\ln 2} \\ & t=\frac{1}{2.5} \sin ^{-1}(\ln 2) \\ & t=0.306338477 \ldots \\ & t=0.306338477 \ldots \times 24 \times 60=441.1274082 \ldots \text { minutes } \\ & t=\underline{441 \mathrm{~min}} \text { or } t=\underline{7 \mathrm{hr} 21 \text { mins }} \text { (to nearest minute) } \end{aligned}$	Eliminates P_{0} and makes $\sin \lambda t$ or $\sin 2.5 t$ the subject by taking In's Then rearranges to make t the subject. (must use $\sin ^{-1}$) awit $t=\underline{441}$ or 7 hr 21 mins	M1 dM1 A1
			14 marks

Aliter (a) Way 2	$\begin{equation*} \frac{\mathrm{d} P}{\mathrm{~d} t}=k P \quad \text { and } \quad t=0, P=P_{0} \tag{1} \end{equation*}$		M1
	$\int \frac{\mathrm{d} P}{\mathrm{kP}}=\int 1 \mathrm{~d} t$	Separates the variables with $\int \frac{\mathrm{d} P}{k P}$ and $\int \mathrm{d} t$ on either side with integral signs not necessary.	
	$\frac{1}{k} \ln P=t ;(+c)$	Must see $\frac{1}{\hbar} \ln P$ and t; Correct equation with/without + c.	A1
	When $t=0, P=P_{0} \Rightarrow \frac{1}{k} \ln P_{0}=c$ (or $P=A e^{k t} \Rightarrow P_{0}=A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\begin{aligned} & \frac{1}{k} \ln P=t+\frac{1}{k} \ln P_{0} \Rightarrow \ln P=k t+\ln P_{0} \\ & \Rightarrow e^{\ln P}=e^{k t+\ln P_{0}}=e^{k t} \cdot e^{\ln R_{0}} \end{aligned}$		
	Hence, $\underline{P=P_{0} e^{k t}}$	$\underline{P=P_{0} e^{k t}}$	A1
			[4]
Aliter (a) Way 3	$\int \frac{\mathrm{d} P}{k P}=\int 1 \mathrm{~d} t$$\frac{1}{k} \ln (k P)=t ;(+c)$	Separates the variables with $\int \frac{\mathrm{d} P}{\mathrm{kP}}$ and $\int \mathrm{d} t$ on either side with integral signs not necessary.	M1
		Must see $\frac{1}{k} \ln (k P)$ and t; Correct equation with/without +c .	A1
	$\begin{aligned} & \text { When } t=0, P=P_{0} \Rightarrow \frac{1}{k} \ln \left(k P_{0}\right)=c \\ & \text { (or } \left.k P=A e^{k t} \Rightarrow k P_{0}=A\right) \\ & \frac{1}{k} \ln (k P)=t+\frac{1}{k} \ln \left(k P_{0}\right) \Rightarrow \ln (k P)=k t+\ln \left(k P_{0}\right) \\ & \Rightarrow e^{\ln (k)}=e^{k t+\ln \left(k B_{0}\right)}=e^{k t} \cdot e^{\ln \left(k \mathrm{~g}_{0}\right)} \\ & \Rightarrow k P=e^{k t} \cdot\left(k P_{0}\right) \Rightarrow k P=k P_{0} e^{k t} \\ & \text { (or } \left.k P=k P_{0} e^{k t}\right) \end{aligned}$	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	Hence, $\underline{P=P_{0} e^{k t}}$	$P=P_{0} e^{k t}$	A1
			[4]

Aliter (c) Way 2	$\begin{equation*} \frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t \quad \text { and } \quad t=0, P=P_{0} \tag{1} \end{equation*}$		
	$\int \frac{\mathrm{d} P}{\lambda P}=\int \cos \lambda t \mathrm{~d} t$	Separates the variables with $\int \frac{\mathrm{d} P}{\lambda P}$ and $\int \cos \lambda t \mathrm{~d} t$ on either side with integral signs not necessary.	M1
	$\frac{1}{\lambda} \ln P=\frac{1}{\lambda} \sin \lambda t ;(+c)$	Must see $\frac{1}{\lambda} \ln P$ and $\frac{1}{\lambda} \sin \lambda t ;$ Correct equation with/without + c.	A1
	When $t=0, P=P_{0} \Rightarrow \frac{1}{\lambda} \ln P_{0}=c$ (or $P=A e^{\text {snit }} \Rightarrow P_{0}=A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\frac{1}{\lambda} \ln P=\frac{1}{\lambda} \sin \lambda t+\frac{1}{\lambda} \ln P_{0} \Rightarrow \ln P=\sin \lambda t+\ln P_{0}$		
	$\Rightarrow e^{\ln P}=e^{\operatorname{sn} \lambda t+\ln P_{0}}=e^{\operatorname{sln} \lambda t} \cdot e^{\ln P_{0}}$		
	Hence, $P=P_{0} e^{\text {snit }}$	$P=P_{0} e^{\operatorname{sln} 2 t}$	A1
			[4]

$P=P_{0} e^{k t}$ written down without the first M1 mark given scores all four marks in part (a).
$P=P_{0} \mathrm{e}^{\sin h t}$ written down without the first M1 mark given scores all four marks in part (c).

Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark. ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
depM1* denotes a method mark which is dependent upon the award of M1*.
ft denotes "follow through" cao denotes "correct answer only" aef denotes "any equivalent form"

Question 6: Jan 08 Q8

Question 7: Jan 10 Q5

Question 8: June 10 Q8

Question 9: Jan11 Q3

Question Number	Scheme	Marks
(a)	$\begin{array}{rlrl} \frac{5}{(x-1)(3 x+2)}=\frac{A}{x-1}+ & \frac{B}{3 x+2} \\ & & 5=A(3 x+2)+B(x-1) \\ x \rightarrow 1 & & 5=5 A \Rightarrow A=1 \\ x \rightarrow-\frac{2}{3} & & 5=-\frac{5}{3} B \Rightarrow B=-3 \end{array}$	M1 A1 A1 (3)
(b)	$\begin{aligned} \int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x= & \int\left(\frac{1}{x-1}-\frac{3}{3 x+2}\right) \mathrm{d} x \\ & =\ln (x-1)-\ln (3 x+2) \quad(+C) \quad \text { ft constants } \end{aligned}$	M1 A1ft A1ft
(c)	$\begin{aligned} \int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x=\int\left(\frac{1}{y}\right) \mathrm{d} y & \\ \ln (x-1)-\ln (3 x+2)=\ln y & (+C) \\ y & =\frac{K(x-1)}{3 x+2} \\ 8 & =\frac{K}{8} \\ \text { Using (2,8) } & \text { depends on first two Ms in (c) } \\ y & =\frac{64(x-1)}{3 x+2} \end{aligned}$	M1 M1 A1 M1 dep M1 dep A1 (6)
		[12]

Question 10: June 11 Q8

