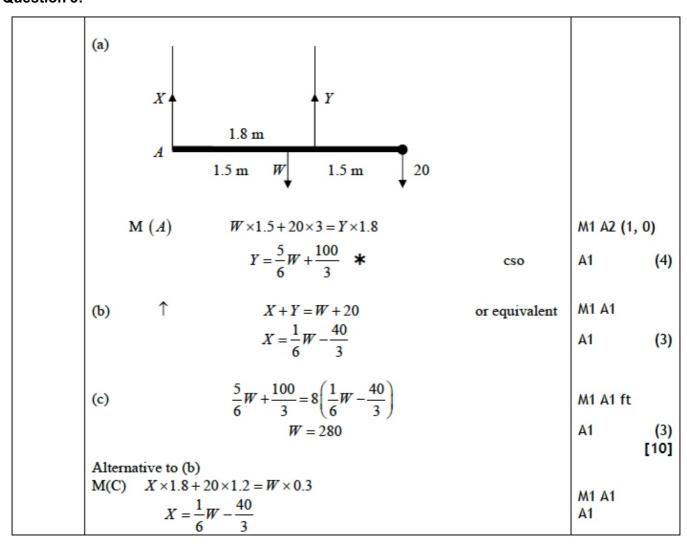


A level Applied Paper 3B Mechanics Practice Paper J10 MARK SCHEME



Question 2:

Question Number	Scheme	Marks
	A 30° 60° B 20 N TN	
	(a) $R(\rightarrow)$ $20\cos 30^{\circ} = T\cos 60^{\circ}$ $T = 20\sqrt{3}, 34.6, 34.64,$	M1 A2 (1,0) A1 (4)
	(b) $R(\uparrow) \qquad mg = 20 \sin 30^{\circ} + T \sin 60^{\circ}$ $m = \frac{40}{g} (\approx 4.1), 4.08$	M1 A2 (1,0) A1 (4) [8]

Question 3:

Question Number	Scheme	Marks
	(a) $s = ut + \frac{1}{2}at^2 \implies 2.7 = \frac{1}{2}a \times 9$	M1 A1
	$a = 0.6 (\text{m s}^{-2})$ (b)	A1 (3)
	Use of $F = \mu R$ $0.8g \sin 30^{\circ} - \mu R = 0.8g \cos 30^{\circ} (\approx 6.79)$ $0.8g \sin 30^{\circ} - \mu R = 0.8 \times a$ $(0.8g \sin 30^{\circ} - \mu 0.8g \cos 30^{\circ} = 0.8 \times 0.6)$ $\mu \approx 0.51 \qquad \text{accept } 0.507$	B1 B1 M1 A1 A1 (5)
	(c) $X = 0.8g$ 30°	
	$\uparrow R\cos 30^\circ = \mu R\cos 60^\circ + 0.8g$ $(R \approx 12.8)$	M1 A2 (1,0)
	$\rightarrow X = R \sin 30^{\circ} + \mu R \sin 60^{\circ}$	M1 A1
	Solving for X , $X \approx 12$ accept 12.0	DM1 A1 (7) [15]
	Alternative to (c)	
	$R = X \sin 30^{\circ} + 0.8 \times 9.8 \sin 60^{\circ}$ $L \mu R + 0.8g \cos 60^{\circ} = X \cos 30^{\circ}$	M1 A2 (1,0) M1 A1
	$X = \frac{\mu 0.8g \sin 60^\circ + 0.8g \cos 60^\circ}{\cos 30^\circ - \mu \sin 30^\circ}$ Solving for X, $X \approx 12$ accept 12.0	DM1 A1 (7)

Question Number	Scheme	Mark	S
	(a)		
	$\mathbf{v} = \frac{21\mathbf{i} + 10\mathbf{j} - (9\mathbf{i} - 6\mathbf{j})}{4} = 3\mathbf{i} + 4\mathbf{j}$	M1 A1	
	speed is $\sqrt{\left(3^2+4^2\right)}=5\left(\mathrm{km}\;\mathrm{h}^{-1}\right)$	M1 A1	(4)
	(b) $\tan \theta = \frac{3}{4} \ (\Rightarrow \theta \approx 36.9^{\circ})$	M1	
	bearing is 37, 36.9, 36.87,	A1	(2)
	(c) $s = 9i - 6j + t(3i + 4j)$	M1	
	$= (3t+9)\mathbf{i} + (4t-6)\mathbf{j} * $ cso	A1	(2)
	(d) Position vector of S relative to L is $(2T + 0) : (AT + 0) : (AT + 0) : (AT + 10) :$		
	$(3T+9)\mathbf{i} + (4T-6)\mathbf{j} - (18\mathbf{i} + 6\mathbf{j}) = (3T-9)\mathbf{i} + (4T-12)\mathbf{j}$ $(3T-9)^2 + (4T-12)^2 = 100$	M1 A1 M1	
	$(3T-9)^{2} + (4T-12)^{2} = 100$ $25T^{2} - 150T + 125 = 0$ or equivalent	DM1 A1	
	$\left(T^2 - 6T + 5 = 0\right)$		
	T = 1, 5	A1	(6) [14]
			נידיו

Question Number	Scheme	Marks	
	(a) N2L A: $5mg - T = 5m \times \frac{1}{4}g$	M1 A1	
	$T = \frac{15}{4} mg * $ cso	A1 (3)	
	(b) N2L B: $T - kmg = km \times \frac{1}{4}g$	M1 A1	
	k = 3	A1 (3)	
	(c) The tensions in the two parts of the string are the same	B1 (1)	
	(d) Distance of <i>A</i> above ground $s_1 = \frac{1}{2} \times \frac{1}{4} g \times 1.2^2 = 0.18g \ (\approx 1.764)$	M1 A1	
	Speed on reaching ground $v = \frac{1}{4}g \times 1.2 = 0.3g \ (\approx 2.94)$	M1 A1	
	For B under gravity $(0.3g)^2 = 2gs_2 \implies s_2 = \frac{(0.3)^2}{2}g \ (\approx 0.441)$	M1 A1	
	$S = 2s_1 + s_2 = 3.969 \approx 4.0$ (m)	A1 (7)	

Question Number	Scheme	Marks
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 4$ $6t - 4 = 0 \Rightarrow t = \frac{2}{3}$	M1 A1
	$s = \int 3t^2 - 4t + 3 dt = t^3 - 2t^2 + 3t (+c)$	M1 A1
	$t = \frac{2}{3} \Rightarrow s = -\frac{16}{27} + 2$ so distance is $\frac{38}{27}$ m	M1 A1
		[8]

$m(B): R \times 4\cos\alpha = F \times 4\sin\alpha + 20g \times 2\cos\alpha$	M1 A2	
Use of $F = \frac{1}{2}R$	M1	
Use of correct trig ratios	B1	
R = 160N or 157N	DM1 A1	
	[7	1

Question Number	Scheme			;
	(a)	x = ut	B1	
	<i>y</i> =	$= cut - 4.9t^2$	M1 A1	
	eliminating t and simplifying to give $y = cx - \frac{4.9x^2}{u^2} **$			
	(b)(i) $0 = c$	$x - \frac{4.9x^2}{u^2}$	M1	
	$0 = x(c - \frac{4}{i})$	$(\frac{.9x}{u^2}) \Rightarrow R = \frac{u^2c}{4.9} = 10c$	M1 A1	
	(ii) When $x = 5c$, $y = H$	I	M1	
	= 56	$c^2 - \frac{(5c)^2}{10} = 2.5c^2$	M1 A1	(6)
	(c) $\frac{dy}{dx} = c$	$-\frac{9.8x}{u^2} = c - \frac{x}{5}$	M1 A1	
	When $x = 0$, $\frac{dy}{dx} = 0$	B1		
	So, $c - \frac{x}{5} = \frac{-1}{c}$			
	$x = 5\left(c + \frac{1}{c}\right)$		A1	(6)
				[17]
	Alternative to 8(c) u u	$\tan \theta = \frac{u}{cu} = \frac{1}{c} = \frac{v}{u}$	B1	
	ν	$\Rightarrow v = \frac{u}{c} = \frac{7}{c}$	M1 A1	
	uca = 7¢	$v = u + at$; $-\frac{7}{c} = 7c - 9.8t$	M1	
	θ	$t = \frac{7}{9.8}\left(c + \frac{1}{c}\right)$	A1	
		$x = ut = 7t$; $x = 5(c + \frac{1}{c})$	A1	