Name:

A level Applied

Mathematics

Paper 3B Mechanics

Practice Paper J10

Time: $\mathbf{2}$ hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 9 questions in this question paper
- The total mark for this paper is 101 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

An athlete runs along a straight road. She starts from rest and moves with constant acceleration for 5 seconds, reaching a speed of $8 \mathrm{~m} \mathrm{~s}^{-1}$. This speed is then maintained for T seconds. She then decelerates at a constant rate until she stops. She has run a total of 500 m in 75 s .
(a) In the space below, sketch a speed-time graph to illustrate the motion of the athlete.
(b) Calculate the value of T.

Question 2

Figure 1
A particle of mass $m \mathrm{~kg}$ is attached at C to two light inextensible strings $A C$ and $B C$. The other ends of the strings are attached to fixed points A and B on a horizontal ceiling. The particle hangs in equilibrium with $A C$ and $B C$ inclined to the horizontal at 30° and 60° respectively, as shown in Figure 1.

Given that the tension in $A C$ is $20 N$, find
(a) the tension in $B C$,
(b) the value of m.

Question 3

Figure 2

A pole $A B$ has length 3 m and weight W newtons. The pole is held in a horizontal position in equilibrium by two vertical ropes attached to the pole at the points A and C where $A C=1.8 \mathrm{~m}$, as shown in Figure 2. A load of weight $20 N$ is attached to the rod at B. The pole is modelled as a uniform rod, the ropes as light inextensible strings and the load as a particle.
(a) Show that the tension in the rope attached to the pole at C is $\left(\frac{5}{6} W+\frac{100}{3}\right) \mathrm{N}$.
(b) Find, in terms of W, the tension in the rope attached to the pole at A.

Given that the tension in the rope attached to the pole at C is eight times the tension in the rope attached to the pole at A,
(c) find the value of W.
(Total 10 marks)

Question 4

A particle of mass 0.8 kg is held at rest on a rough plane. The plane is inclined at 30° to the horizontal. The particle is released from rest and slides down a line of greatest slope of the plane. The particle moves 2.7 m during the first 3 seconds of its motion. Find
(a) the acceleration of the particle,
(b) the coefficient of friction between the particle and the plane.

The particle is now held on the same rough plane by a horizontal force of magnitude X newtons, acting in a plane containing a line of greatest slope of the plane, as shown in Figure 3. The particle is in equilibrium and on the point of moving up the plane.

Figure 3
(c) Find the value of X.

Question 5

[In this question, \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]

A ship S is moving along a straight line with constant velocity. At time t hours the position vector of S is s km . When $t=0, \mathrm{~s}=9 \mathbf{i}-6 \mathbf{j}$. When $t=4, \mathrm{~s}=21 \mathbf{i}+10 \mathbf{j}$. Find
(a) the speed of S,
(b) the direction in which S is moving, giving your answer as a bearing.
(c) Show that $\mathrm{s}=(3 t+9) \mathbf{i}+(4 t-6) \mathbf{j}$.

A lighthouse L is located at the point with position vector $(18 \mathbf{i}+6 \mathbf{j}) \mathrm{km}$. When $t=T$, the ship S is 10 km from L.
(d) Find the possible values of T.

Question 6

Figure 4
Two particles A and B have masses $5 m$ and $k m$ respectively, where $k<5$. The particles are connected by a light inextensible string which passes over a smooth light fixed pulley. The system is held at rest with the string taut, the hanging parts of the string vertical and with A and B at the same height above a horizontal plane, as shown in Figure 4. The system is released from rest. After release, A descends with acceleration $\frac{1}{4} g$.
(a) Show that the tension in the string as A descends is $\frac{15}{4} \mathrm{mg}$.
(b) Find the value of k.
(c) State how you have used the information that the pulley is smooth.

After descending for 1.2 s , the particle A reaches the plane. It is immediately brought to rest by the impact with the plane. The initial distance between B and the pulley is such that, in the subsequent motion, B does not reach the pulley.
(d) Find the greatest height reached by B above the plane.

Question 7

A particle P moves along the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x direction, where $v=3 t^{2}-4 t+3$. When $t=0, P$ is at the origin O. Find the distance of P from O when P is moving with minimum velocity.
(Total 8 marks)

Question 8.

Figure 2

A uniform rod $A B$, of mass 20 kg and length 4 m , rests with one end A on rough horizontal ground. The rod is held in limiting equilibrium at an angle α to the horizontal, where $\tan \alpha=\frac{3}{4}$, by a force acting at B, as shown in Figure 2. The line of action of this force lies in the vertical plane which contains the rod. The coefficient of friction between the ground and the rod is 0.5 . Find the magnitude of the normal reaction of the ground on the rod at A.

Question 9

[In this question \mathbf{i} and \mathbf{j} are unit vectors in a horizontal and upward vertical direction respectively]
A particle P is projected from a fixed point O on horizontal ground with velocity $u(\mathbf{i}+c \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$, where c and u are positive constants. The particle moves freely under gravity until it strikes the ground at A, where it immediately comes to rest. Relative to O, the position vector of a point on the path of P is $(x i+y j) \mathrm{m}$.
(a) Show that

$$
y=c x-\frac{4.9 x^{2}}{u^{2}} .
$$

Given that $u=7, O A=R \mathrm{~m}$ and the maximum vertical height of P above the ground is $H \mathrm{~m}$,
(b) using the result in part (a), or otherwise, find, in terms of c,
(i) R
(ii) H.

Given also that when P is at the point Q, the velocity of P is at right angles to its initial velocity,
(c) find, in terms of c, the value of x at Q.

