

A level Applied Paper 3B Mechanics Practice Paper J11 MARK SCHEME

Question Number	Scheme	Marks	
(a)	$-6.45 = u - 9.8 \times 0.75$ $0.9 = u **$	M1 A1 A1	(3)
(b)	$0 = 0.81 - 2 \times 9.8 \times s$ s = 0.041 or 0.0413	M1 A1	(2)
(c)	$h = -0.9 \times 0.75 + 4.9 \times 0.75^{2}$ $h = 2.1 \text{ or } 2.08$	M1 A1	(3)
			[8]

Question Number	Scheme	Marks
(a)	$A = 1 \text{ m} C 2 \text{ m}$ $20g$ $20g$ Taking moments about B: $5 \times R_C = 20g \times 3$ $R_C = 12g \text{ or } 60g/5 \text{ or } 118 \text{ or } 120$	M1A1 A1
	Resolving vertically: $R_C + R_B = 20g$ $R_B = 8g \text{ or } 78.4 \text{ or } 78$	M1 A1 (5)
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Resolving vertically: $50g = R + R$ Taking moments about B: $5 \times 25g = 3 \times 20g + (6-x) \times 30g$ 30x = 115 x = 3.8 or better or 23/6 oe	M1 A1 A1 A1 (5) [10]

Question Number	Scheme	Marks
(a)	30 N F 120 N	
	Resolving perpendicular to the plane: $S = 120\cos\alpha + 30\sin\alpha$ = 114 *	M1 A1 A1 A1 (4)
(b)	P F 120 N	
	Resolving perpendicular to the plane: $R = 120 \cos \alpha$ $= 96$ $F_{\text{max}} = \frac{1}{2}R$ Resolving parallel to the plane: In equilibrium: $P_{\text{max}} = F_{\text{max}} + 120 \sin \alpha$ $= 48 + 72 = 120$	M1 A1 A1 M1 M1 A(2,1,0) A1 (8)
(c)	$30+F=120\sin\alpha$ OR $30-F=120\sin\alpha$ So $F=42$ N acting up the plane.	M1 A1 A1 (3) [15]

Question Number	Scheme	Marks
(a)	speed = $\sqrt{2^2 + (-5)^2}$	M1
	$=\sqrt{29}=5.4$ or better	A1 (2)
(b)	((7i+10j)-(2i-5j))/5	M1 A1
	$ \frac{((7i+10j)-(2i-5j))}{5} $ = $(5i+15j)/5=i+3j$	A1
	$\mathbf{F} = m\mathbf{a} = 2(\mathbf{i} + 3\mathbf{j}) = 2\mathbf{i} + 6\mathbf{j}$	DM1 A1ft
		(5)
(c)	$\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 5\mathbf{j}) + (\mathbf{i} + 3\mathbf{j})t$	М1
	$\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 5\mathbf{j}) + (\mathbf{i} + 3\mathbf{j})t$ $(-5 + 3t)\mathbf{j}$	A1
	Parallel to $i \Rightarrow -5 + 3t = 0$	M1
	t = 5/3	A1
		(4) [11]

Question Number	Scheme	Marks
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Taking moments about A: $3S = 100 \times 2 \times \cos \alpha$	M1 A1
	Resolving vertically: $R + S \cos \alpha = 100$	M1 A1
	Resolving horizontally: $S \sin \alpha = F$	M1 A1
	(Most alternative methods need 3 independent equations, each one worth M1A1. Can be done in 2 e.g. if they resolve horizontally and take moments about X then $R \times 2 \times \cos \alpha = S \times (3 - 2 \times \cos^2 \alpha)$ scores M2A2)	
	Substitute trig values to obtain correct values for F and R (exact or decimal equivalent).	DM1
	$\left(S = \frac{200\sqrt{8}}{9}\right), \ R = 100 - \frac{1600}{27} = \frac{1100}{27} \approx 40.74 \ , \ F = \frac{200\sqrt{8}}{27} \approx 20.95$ $F \le \mu R, \ 200\sqrt{8} \le \mu \times 1100, \mu \ge \frac{200\sqrt{8}}{1100} = \frac{2\sqrt{8}}{11}.$	M1
	Least possible μ is 0.514 (3sf), or exact.	A1
		[10]

(a)	$a = 4t^3 - 12t$ Convincing attempt to integrate $v = t^4 - 6t^2 (+c)$ Use initial condition to get $v = t^4 - 6t^2 + 8 (\text{ms}^{-1})$.	M1 A1 A1	(3)
(b)	Convincing attempt to integrate $s = \frac{t^5}{5} - 2t^3 + 8t(+0)$ Integral of their v	M1 A1ft	(2)
(c)	Set their $v = 0$ Solve a quadratic in t^2 $(t^2 - 2)(t^2 - 4) = 0 \Rightarrow$ at rest when $t = \sqrt{2}$, $t = 2$	M1 DM1 A1	(3) [8]

(a)	Using $s = ut + \frac{1}{2}at^2$ Method must be	M1	
	clear $\mathbf{r} = (3t)\mathbf{i} + (10 + 5t - 4.9t^2)\mathbf{j}$ Answer given	A1 A1	(3)
(b)	j component = 0: $10 + 5t - 4.9t^2$ quadratic formula: $t = \frac{5 \pm \sqrt{25 + 196}}{9.8} = \frac{5 \pm \sqrt{221}}{9.8}$ T = 2.03(s), 2.0 (s) positive solution only.	M1 DM1	(3)
(c)	Differentiating the position vector (or working from first principles) $\mathbf{v} = 3\mathbf{i} + (5 - 9.8t)\mathbf{j} \text{ (ms}^{-1}\text{)}$	M1 A1	(2)
(d)	At B the j component of the velocity is the negative of the i component: $5 - 9.8t = -3$, $8 = 9.8t$,	M1 A1	(2)
(e)	t = 0.82 $v = 3i - 3j$, speed = $\sqrt{3^2 + 3^2} = \sqrt{18} = 4.24 \text{ (m s}^{-1})$	M1A1	(2) [12]

Question Number	Scheme	Marks
(a)	$ \begin{array}{cccc} P & T & B & \tan \theta = \frac{5}{12} \\ \hline A & 7 & \text{kg} & \sin \theta = \frac{5}{13} \\ \hline A & 7 & \text{kg} & \cos \theta = \frac{12}{13} \end{array} $	
	For A: $7g - T = 7a$ For B: parallel to plane $T - F - 3g \sin \theta = 3a$ perpendicular to plane $R = 3g \cos \theta$ $F = \mu R = 3g \cos \theta = 2g \cos \theta$ Eliminating T , $7g - F - 3g \sin \theta = 10a$	M1 A1 M1 A1 M1 A1 M1
	Equation in g and a: $7g - 2g \times \frac{12}{13} - 3g \frac{5}{13} = 7g - \frac{39}{13}g = 4g = 10a$ $a = \frac{2g}{5} \text{ oe or } 3.9 \text{ or } 3.92$	DM1 A1 (10)
(b)	After 1 m, $v^2 = u^2 + 2as$, $v^2 = 0 + 2 \times \frac{2g}{5} \times 1$ v = 2.8	M1 A1 (2)
(c)	$-(F+3g \sin \theta) = 3a$ $\frac{2}{3} \times 3g \times \frac{12}{13} + 3g \times \frac{5}{13} = 3g = -3a, \ a = -g$ $v = u + at, \ 0 = 2.8 - 9.8t,$ $t = \frac{2}{7} \text{ oe, } 0.29. \ 0.286$	M1 A1 DM1 A1 (4) [16]