

A level Applied Paper 3B Mechanics Practice Paper M10 MARK SCHEME

Question 1

Question Number	Scheme	Marks
(a)	$(\uparrow)v^2 = u^2 + 2as$ $0 = 14.7^2 - 2 \times 9.8 \times s$ s = 11.025 (or 11 or 11.0 or 11.03) m Height is 60 m or 60.0 m ft	M1A1 A1 A1ft (4)
(b)	$(\downarrow)v^2 = u^2 + 2as$ $v^2 = (-14.7)^2 + 2x \ 9.8 \ x \ 49$ $v = 34.3 \ \text{or} \ 34 \ \text{m s}^{-1}$	M1 A1 A1 (3)
(c)	$(\downarrow)v = u + at$ OR $(\downarrow)s = ut + \frac{1}{2}at^2$ $34.3 = -14.7 + 9.8t$ $49 = -14.7t + 4.9t^2$ t = 5 $t = 5$	M1 A1 A1 (3) [10]

Question Number	Scheme	Marks		
(a)	$F = \frac{1}{3}R$	B1		
	$(\uparrow) R\cos\alpha - F\sin\alpha = 0.4g$	M1 A1		
	$R = \frac{2}{3}g = 6.53$ or 6.5	M1 A1 (5)		
(b)	$(\to)P - F\cos\alpha - R\sin\alpha = 0$	M1 A2		
	$P = \frac{26}{43}g = 5.66$ or 5.7	M1 A1 (5)		
		[10]		

Question 4

Question Number	Scheme	Marks	
	$(-4\mathbf{i} - 7\mathbf{j}) = \mathbf{r} + 4(-3\mathbf{i} + 2\mathbf{j})$	M1 A1	
	$\mathbf{r} = (8\mathbf{i} - 15\mathbf{j})$	A1	
	$ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 ft	
		[5]	

Question Number	Scheme					Marks
	R	500	200	500	<u>s</u>	
	M(B), $500x + 500.2$	↓ $x + 200x3 =$	♦ • Rx5 +	↓ Sx1(or any	valid moments equatio	on) M1 A1 A1
	$(\downarrow) R + S =$	500 + 500 +	200 = 12	200 (or a mo	ments equation)	M1 A1
		solving for	x; x = 1.5	2 m		M1 A1 cso [7]

Scheme	Marks
$(\rightarrow) 100\cos 30 = F$	M1 A1
F = 0.5 R seen	A1 (B1)
$(\downarrow) mg + 100\cos 60 = R$	M1 A1
m = 13 kg or 12.6 kg	DM1 A1
	[7]
	(→) $100\cos 30 = F$ F = 0.5 R seen (↓) $mg + 100\cos 60 = R$

Question Number	Scheme	Marks	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(a)	$M(A) 3a \times T \cos \theta = 2amg + 4amg$ $\cos \theta = \left(\frac{2}{\sqrt{9+4}}\right) = \frac{2}{\sqrt{13}}$	M1 A1 A1 B1	
	$\frac{6}{\sqrt{13}}T = 6mg$ $T = mg\sqrt{13} *$	A1	(5
(b)	$3a \times T \times \cos \theta = 2amg + 4aMg$	M1	
	$T = \frac{(2mg + 4Mg)}{6}\sqrt{13} \le 2mg\sqrt{13}$	A1	
	$mg + 2Mg < 6mg$ $M \le \frac{5}{2}m$ cso	A1	(3
			[8]

Question Number	Scheme	Marks
	3t+	5
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 3t + 5$	
	$v = \int (3t + 5) dt$	M1*
	$v = \frac{3}{2}t^2 + 5t \ (+c)$	A1
	$t=0$ $v=2$ \Rightarrow $c=2$	B1
	$v = \frac{3}{2}t^{2} + 5t + 2$ $t = T \qquad 6 = \frac{3}{2}T^{2} + 5T + 2$ $12 = 3T^{2} + 10T + 4$	DM1*
	$3T^{2} + 10T - 8 = 0$ $(3T - 2)(T + 4) = 0$	M1
	$T = \frac{2}{3}$ $(T = -4)$	A1
	$T = \frac{2}{3} \text{(or 0.67)}$	[6]

Question Number	Scheme	Marks	
(a)	$(\downarrow)0.4g - T = 0.4a$	M1 A1	
Mark	$(\uparrow)T - 0.3g = 0.3a$	M1 A1	
together	solving for T	DM1	
	T = 3.36 or 3.4 or 12g/35 (N)	A1 (6)	
(b)	0.4g - 0.3g = 0.7a	DM1	
	$a = 1.4 \text{ m s}^{-2}, g/7$	A1 (2)	
(c)	$(\uparrow)v = u + at$		
	$v = 0.5 \times 1.4$	M1	
	= 0.7	A1 ft on a	
	$(\uparrow)s = ut + \frac{1}{2}at^2$		
	$s = 0.5 \times 1.4 \times 0.5^2$	M1	
	= 0.175	A1 ft on a	
	$(\downarrow)s = ut + \frac{1}{2}at^2$		
	$1.175 = -0.7t + 4.9t^2$	DM1 A1 ft	
	$4.9t^2 - 0.7t - 1.175 = 0$		
	$t = \frac{0.7 \pm \sqrt{0.7^2 + 19.6 \times 1.175}}{}$	DM1 A1 cao	
	9.8		
	= 0.5663or		
	Ans 0.57 or 0.566 s	A1 cao (9) [17]	

Question Number	Cheme		Marks	
(a)	Vertical motion: $v^2 = u^2 + 2as$	M1		
	$(40 \sin \theta)^2 = 2 \times g \times 12$ $(\sin \theta)^2 = \frac{2 \times g \times 12}{40^2}$	A1		
	$\theta = 22.54 = 22.5^{\circ}$ (accept 23)	A1	(3)	
(b)	Vert motion $P \to R$: $s = ut + \frac{1}{2}at^2$			
	$-36 = 40 \sin \theta t - \frac{g}{2} t^2$	M1		
	$\frac{g}{2}t^2 - 40\sin\theta t - 36 = 0$	A1 A1		
	$t = \frac{40 \sin 22.54 \pm \sqrt{(40 \sin 22.54)^2 + 4 \times 4.9 \times 36}}{1 + 4 \times 4.9 \times 36}$			
	t = 4.694 9.8	A1		
	Horizontal P to R: S = 40 cos θt	M1		
	=173 m (or 170 m)	A1	(6)	
(c)	Using Energy:			
	$\frac{1}{2}mv^2 - \frac{1}{2}m \times 40^2 = m \times g \times 36$	M1 A1		
	$v^2 = 2(9.8 \times 36 + \frac{1}{2} \times 40^2)$			
	v = 48.0			
	$v = 48 \text{ m s}^{-1} \text{ (accept } 48.0\text{)}$	A1	(3)	
			[12]	