

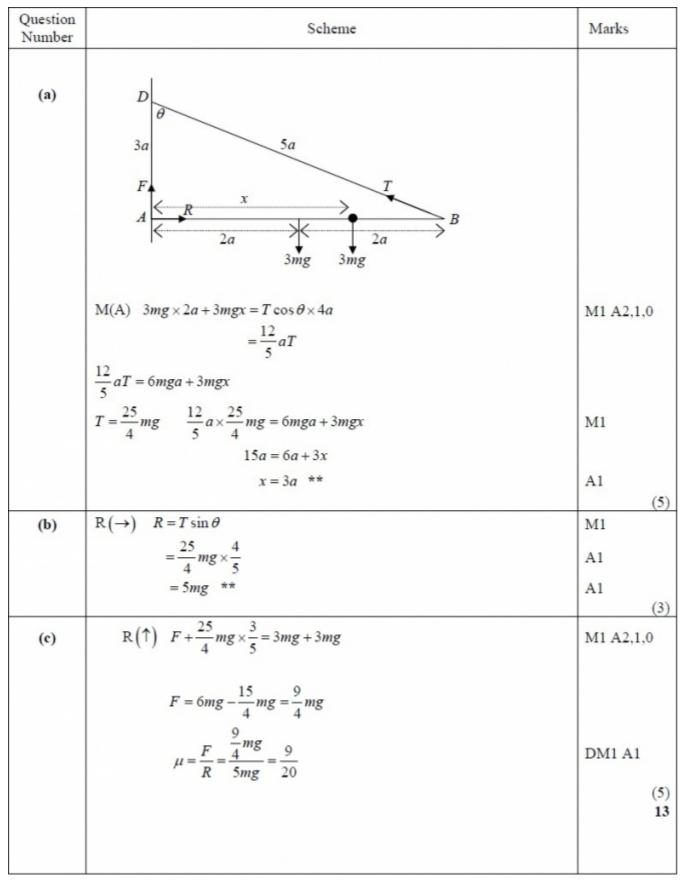
A level Applied Paper 3B Mechanics Practice Paper M11 MARK SCHEME

Question Number	Scheme	Marks
(a)	5 V 0 4 64 84	B1 shape B1 figs (2)
(b)	$(\frac{1}{2}x4x5) + 60 \ge 5$ = 310	M1 A1 A1 (3)
(c)	$\frac{(5+V)}{2} \ge 20 = (400-310)$ $V = 4$	M1 A2 ft DM1 A1 (5)
(d)	$\frac{5-4}{20} = 0.05 \text{ ms}^{-2}$	M1 A1 (2) 12

Question Number	Scheme	Marks
(a)	$0^2 = u^2 - 2x9.8x40$ $u = 28 \text{ m s}^{-1} ** \text{ GIVEN ANSWER}$	M1 A1 A1 (3)
(b)	$33.6 = 28t - \frac{1}{2}9.8t^{2}$ $4.9t^{2} - 28t + 33.6 = 0$ $t = \frac{28 \pm \sqrt{28^{2} - 4x4.9x33.6}}{9.8}$ $= 4 \text{ s or } (1.7 \text{ s or } 1.71 \text{ s})$	M1 A1 M1 A1 A1 (5) 8

Question Number	Scheme	Marks
(a)	$P \overbrace{X}{2 \text{ m}} 2 \text{ m} 2 \text{ m} 2 \text{ m} 0 2 \text{ m} R$ $\downarrow \qquad \qquad$	
(i)	EITHER $M(R)$, $8X + 2X = 40g \ge 6 + 20g \ge 4$ solving for X, $X = 32g = 314$ or 310 N	M1 A2 M1 A1
(ii)	equation) $(\uparrow) X + X = 40g + 20g + Mg$ (or another moment solving for $M, M = 4$	M1 A2 M1 A1
(i)	OR $M(P)$, $6X = 40g \ge 2 + 20g \ge 4 + Mg \ge 8$ solving for X, $X = 32g = 314$ or 310 N (\uparrow) $X + X = 40g + 20g + Mg$ (or another moment	M1 A2 M1 A1 M1 A2
(ii)	equation) solving for $M, M = 4$	M1 A1 (10
(b)	Masses concentrated at a point or weights act at a point	B1 (1

Question Number	Scheme	Marks
	4 $\cos \alpha + F = W \sin \alpha$ R = 4 $\sin \alpha + W \cos \alpha$ F = 0.5R $\cos \alpha = 0.8$ or $\sin \alpha = 0.6$ R = 20N ** GIVEN ANSWER W = 22N	M1 A1 M1 A1 B1 B1 M1 A1 A1
<u>OR</u>	R sin $\alpha = 4 + F \cos \alpha$ R cos $\alpha + F \sin \alpha = W$ F = 0.5R cos $\alpha = 0.8$ or sin $\alpha = 0.6$ R = 20N ** GIVEN ANSWER W = 22N	(9) M1 A1 M1 A1 B1 B1 M1 A1 A1
		(9) 9



Question Number	Scheme	Marks
(a)	$\tan\theta = \frac{3}{4}$; bearing is 37° (nearest degree)	M1; A1
(b) (i) (ii) (iii)	p = (i + j) + t(2i - 3j) q = (-2j) + t(3i + 4j) PQ = q - p = (-i - 3j) + t(i + 7j)	(2) M1 A1 A1 M1 A1 (5)
(c) (i) (ii)	-1+t = 0 t = 1 or 3pm -1+t = -(-3+7t) $t = \frac{1}{2}$ or 2.30 pm	M1 A1 M1 A1
		(4) 11

Question Number	Scheme	Marks
(a)	$R = 0.3g\cos\alpha$	M1
	= 0.24g = 2.35 (3sf) = 2.4 (2sf)	A1 (2)
(b)	mg - T = 1.4m	M1 A1
	$T - 0.3g\sin \alpha - F = 0.3 \ge 1.4$	M1 A2
	F = 0.5R	M1
	Eliminating R and T	DM1
	m = 0.4	A1
		(8)
(c)	$v = 1.4 \ge 0.5$	B1
	$-0.3g\sin\alpha - F = 0.3a$	M1 A1
	a = -9.8	A1
	0 = 0.7 - 9.8t	M1
	t = 0.071 s or 0.0714 s (1/14 A0)	A1
		(6)
		16

Question Number	Scheme	Marks
(a)		
	$\longrightarrow (t-4)$	
	<i>P m</i>	
	0	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = t - 4$	
	$dt = \frac{1}{2}t^2 - 4t(+c)$	M1 A1
	$v = \frac{1}{2}t - 4t(+c)$ $t = 0 v = 6 \Rightarrow c = 6$	
	$t = 0 v = 0 \Longrightarrow c = 0$ $\therefore v = \frac{1}{2}t^2 - 4t + 6$	M1 A1
	$v = \frac{1}{2} - 4i + 6$	(4)
(b)	$v = 0$ $0 = t^2 - 8t + 12$	M1
	(t-6)(t-2)=0	DM1
	t = 6 $t = 2$	A1
()	t ³ 2 2 1	(3)
(c)	$x = \frac{t^3}{6} - 2t^2 + 6t + k$	M1 A1 ft
	$x_6 - x_2 = \frac{6^3}{6} - 2 \times 6^2 + 6^2 + k$	DM1
	$-\left(\frac{2^3}{6} - 2 \times 2^2 + 6 \times 2 + k\right)$	
	$=-5\frac{1}{3}$	
	\therefore Distance is $5\frac{1}{3}$ m	A1
		(4)
		11

Question Number	Scheme	Marks
(a)	u v v x	
	Horiz: $x = u \cos \alpha t$	B1
	Vert: $y = u \sin \alpha t - \frac{1}{2}gt^2$ $y = u \sin \alpha \times \frac{x}{u \cos \alpha} - \frac{1}{2}g \times \frac{x^2}{u^2 \cos^2 \alpha}$	M1 DM1
	$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha} **$	A1 (4)
(b)	$y = -7: -7 = \tan 45x - \frac{gx^2}{2 \times 7^2 \cos^2 45}$	M1 A1
	$y = -7: -7 = \tan 45x - \frac{gx^2}{2 \times 7^2 \cos^2 45}$ -7 = $x - \frac{9.8x^2}{7^2}$ -7 = $x - \frac{x^2}{5}$ $x^2 - 5x - 35 = 0$	M1
	$x = \frac{5 \pm \sqrt{25 + 4 \times 35}}{2}$	M1
	x = 8.92 or 8.9	A1 (5)
(c)	Time to travel 8.922 m horizontally = $\frac{8.922}{7 \cos 45}$ = 1.802s	M1
	$v = \frac{8.922}{1.402}$	M1 A1 ft
	$= 6.36 \text{ or } 6.4 \text{ (m s}^{-1}\text{)}$	A1 (4) 13