Name:

A level Applied

 Mathematics
Paper 3B Mechanics

Practice Paper M12

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 9 questions in this question paper
- The total mark for this paper is 104 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

A car is moving on a straight horizontal road. At time $t=0$, the car is moving with speed $20 \mathrm{~m} \mathrm{~s}^{-1}$ and is at the point A. The car maintains the speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ for 25 s . The car then moves with constant deceleration $0.4 \mathrm{~m} \mathrm{~s}^{-2}$, reducing its speed from $20 \mathrm{~m} \mathrm{~s}^{-1}$ to $8 \mathrm{~m} \mathrm{~s}^{-1}$. The car then moves with constant speed $8 \mathrm{~m} \mathrm{~s}^{-1}$ for 60 s . The car then moves with constant acceleration until it is moving with speed 20 m s^{-1} at the point B.
(a) Sketch a speed-time graph to represent the motion of the car from A to B.
(b) Find the time for which the car is decelerating.

Given that the distance from A to B is 1960 m ,
(c) find the time taken for the car to move from A to B.

Question 2

A particle P is projected vertically upwards from a point A with speed $u \mathrm{~m} \mathrm{~s}^{-1}$. The point A is 17.5 m above horizontal ground. The particle P moves freely under gravity until it reaches the ground with speed 28 m s^{-1}.
(a) Show that $u=21$

At time t seconds after projection, P is 19 m above A.
(b) Find the possible values of t.

The ground is soft and, after P reaches the ground, P sinks vertically downwards into the ground before coming to rest. The mass of P is 4 kg and the ground is assumed to exert a constant resistive force of magnitude 5000 N on P.
(c) Find the vertical distance that P sinks into the ground before coming to rest.

Question 3

Figure 3
Two particles P and Q, of mass 0.3 kg and 0.5 kg respectively, are joined by a light horizontal rod. The system of the particles and the rod is at rest on a horizontal plane. At time $t=0$, a constant force \mathbf{F} of magnitude 4 N is applied to Q in the direction $P Q$, as shown in Figure 3. The system moves under the action of this force until $t=6 \mathrm{~s}$. During the motion, the resistance to the motion of P has constant magnitude 1 N and the resistance to the motion of Q has constant magnitude 2 N .
Find
(a) the acceleration of the particles as the system moves under the action of \mathbf{F},
(b) the speed of the particles at $t=6 \mathrm{~s}$,
(c) the tension in the rod as the system moves under the action of \mathbf{F}.

At $t=6 \mathrm{~s}, \mathbf{F}$ is removed and the system decelerates to rest. The resistances to motion are unchanged. Find
(d) the distance moved by P as the system decelerates,
(e) the thrust in the rod as the system decelerates.

Question 4

Figure 1

A non-uniform rod $A B$ has length 3 m and mass 4.5 kg . The rod rests in equilibrium, in a horizontal position, on two smooth supports at P and at Q, where $A P=0.8 \mathrm{~m}$ and $Q B=0.6 \mathrm{~m}$, as shown in Figure 1 . The centre of mass of the rod is at G. Given that the magnitude of the reaction of the support at P on the rod is twice the magnitude of the reaction of the support at Q on the rod, find
(a) the magnitude of the reaction of the support at Q on the rod,
(b) the distance $A G$

Question 5

Figure 2
A box of mass 5 kg lies on a rough plane inclined at 30° to the horizontal. The box is held in equilibrium by a horizontal force of magnitude 20 N , as shown in Figure 2. The force acts in a vertical plane containing a line of greatest slope of the inclined plane. The box is in equilibrium and on the point of moving down the plane. The box is modelled as a particle.
Find
(a) the magnitude of the normal reaction of the plane on the box,
(b) the coefficient of friction between the box and the plane.

Question 6

Figure 1
A uniform rod $A B$, of mass 5 kg and length 4 m , has its end A smoothly hinged at a fixed point. The rod is held in equilibrium at an angle of 25° above the horizontal by a force of magnitude F newtons applied to its end B. The force acts in the vertical plane containing the rod and in a direction which makes an angle of 40° with the rod, as shown in Figure 1.
(a) Find the value of F.
(b) Find the magnitude and direction of the vertical component of the force acting on the rod at A.
(Total 8 marks)

Question 7

[In this questioniandjare perpendicular unit vectors in a horizontal plane.]
A particle P moves in such a way that its velocity $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$ at time t seconds is given by

$$
\begin{equation*}
\mathbf{v}=\left(3 t^{2}-1\right) \mathbf{i}+\left(4 t-t^{2}\right) \mathbf{j} \tag{5}
\end{equation*}
$$

Given that, when $t=0$, the position vector of P is \mathbf{i} metres,
(b) find the position vector of P when $t=3$

Question 8

[In this questioni and jare horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]
A ship S is moving with constant velocity $(-12 \mathbf{i}+7.5 \mathbf{j}) \mathrm{km} \mathrm{h}^{8 \# 150 ; 1}$.
(a) Find the direction in which S is moving, giving your answer as a bearing.

At time t hours after noon, the position vector of S is $\mathbf{s} \mathbf{k m}$. When $t=0, \mathbf{s}=40 \mathbf{i} \& \# 150 ; 6 \mathbf{j}$.
(b) Write down \mathbf{s} in terms of t.

A fixed beacon B is at the point with position vector $(7 \mathbf{i}+12.5 \mathbf{j}) \mathrm{km}$.
(c) Find the distance of S from B when $t=3$
(d) Find the distance of S from B when S is due north of B.

Question 9

Figure 4
A small stone is projected from a point O at the top of a vertical cliff $O A$. The point O is 52.5 m above the sea. The stone rises to a maximum height of 10 m above the level of O before hitting the sea at the point B, where $A B=50 \mathrm{~m}$, as shown in Figure 4. The stone is modelled as a particle moving freely under gravity.
(a) Show that the vertical component of the velocity of projection of the stone is $14 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Find the speed of projection.
(c) Find the time after projection when the stone is moving parallel to $O B$.

