

A level Applied Paper 3B Mechanics Practice Paper M13 MARK SCHEME

Question Number	Scheme	Marks
(a)	$240 = \frac{1}{2}(u+34)10$	M1 A1
	u = 14	A1
		(3)
(b)	$34 = 14 + 10a \implies a = 2$	M1 A1
	$120 = 14t + \frac{1}{2} \times 2 \times t^2$	M1 A1
	$t^2 + 14t - 120 = 0$	
	Solving, $t = -20$ or 6	DM1
	t=6	A1
	OR	
	$34 = 14 + 10a \implies a = 2$	M1 A1
	$v^2 = 14^2 + 2 \times 2 \times 120 \implies v = 26$	
	AND 26=14+2t	M1 A1
	t = 6	DM 1 A1
		(6)
		[9]
	Notes for Question	
Q (a)	First M1 for a complete method to produce an equation in u only. First A1 for a correct equation. ($u^2 - 48u + 476 = 0$ oe is possible). Second A1 for $u = 14$.	
Q (b)	First M1 for an equation in a only. (M0 if $v = 34$ when $s = 120$ is used) First A1 for $a = 2$. (This may have been found in part (a)) Second M1 for a 3-term quadratic equation in t only, allow sign errors (must have found a value of a . (M0 if $v = 34$ when $s = 120$ is used) Second A1 for a correct equation. Third M1 dependent on previous M1 for solving for t . Third A1 for $t = 6$ OR First M1 for an equation in a only. First A1 for $a = 2$. (This may have been found in part (a)) Second M1 for a complete method to obtain an equation in t only, allow sign errors. (must have found a value of a) Second A1 for a correct equation. Third M1 dependent on previous M1 for solving for t . Third A1 for $t = 6$	

Question Number	Scheme	Marks
(a)	Speed ▲ Shape	B1
	Figures	B1
	22	(2)
	0 30 30+7 120 Time	
(b)	$\frac{(120+T)22}{2} = 2145$	M1 A1
	T = 75	A1
		(3)
(c)	$\frac{(t+t-30)22}{2} = 990$	M1 A1
	t = 60	A1
	Answer = 60 - 10 = 50	A1
		(4)
(d)	$990 = 0.5a50^2$	M1
	a = 0.79, 0.792, 99/125 oe	A1
		(2)
		[11]

	Notes for Question
Q (a)	First B1 for a trapezium starting at the origin and ending on the t -axis. Second B1 for the figures marked (allow missing 0 and a delineator of for T) (allow if they have used $T = 75$ correctly on their graph)
Q (b)	First M1 for producing an equation in their T only by equating the area of the trapezium to 2145, with the correct no. of terms. If using a single trapezium, we need to see evidence of using $\frac{1}{2}$ the sum of the two parallel sides or if using triangle(s), need to see $\frac{1}{2}$ base x height. Second A1 cao for a correct equation in T (This is not f.t. on their T) Third A1 for $T = 75$. N.B. Use of a single suvat equation for the whole motion of the car e.g. $s = t(u+v)/2$ is M0
Q (c)	First M1 for producing an equation in t only (they may use $(t-30)$ oe as their variable) by equating the area of the trapezium to 990, with the correct no. of terms. If using a trapezium, we need to see evidence of using $\frac{1}{2}$ the sum of the two parallel sides or if using triangle(s), need to see $\frac{1}{2}$ base x height. First A1 for a correct equation. Second A1 for $t = 60$ (Allow $30 + 30$). Third A1 for answer of 50. N.B. Use of a single <i>suvat</i> equation for the whole motion of the car e.g. $s = t(u+v)/2$ is M0. Use of the motion of the motorcycle is M0 (insufficient information). Use of $v = 22$ for the motorcycle is M0.
Q (d)	First M1 for an equation in a only. First A1 for $a = 0.79$, 0.792 , $99/125$ oe N.B. Use of $v = 22$ for the motorcycle is M0.

Question Number	Scheme	Marks
(a)	For system, (\uparrow) , $T - 950g - 50g = 1000 \times -2$	M1 A1
	T = 7800 N	A1
		(3)
(b)	For woman, (T), $R-50g=50\times-2$	M1 A1
	R = 390 N	A1
		(3)
		[6]
	Notes for Question	
	(In both parts, use the <i>mass</i> to decide which part of the system is being	
	considered and M marks can only be scored if an equation contains only	
	forces acting on that part of the system)	
Q (a)	M1 is for a complete method for finding T i.e. for an equation in T only,	
	dimensionally correct, with the correct number of terms.	
	First A1 for a correct equation.	
	Second A1 for 7800 (N).	
	M1 is for a complete method for finding R i.e. for an equation in R only,	
	dimensionally correct, with the correct number of terms.	
Q (b)	First A1 for a correct equation.	
	Second A1 for 390 (N).	
	N.B. Equation for lift <i>only</i> is: $T - 950g - R = 950 \text{ x}$ (-2)	

Question Number	Scheme		Marks	
(a)	P	Q		
	A 2 m ♠	↑3 m B		
	▼Mg			
	▼ x m			
	$M(P)$, $50g \times 2 = Mg \times (x - 2)$	2)	M1 A1	
	$M(Q)$, $50g \times 3 = Mg \times (12 - 1)$		M1 A1	
(i)	M = 25 (kg)		DM 1 A1	
(ii)	x = 6 (m)		DM 1 A1	
			3)	
(b)	A 2 m A 25g	Q X 13 m B R 50g		
	$(\uparrow)R + R = 25g + 50g$		M1 A1 f	
	$M(A)$, $2R+12R=25g\times 6+50g$	$g \times AX$	M1 A1 f	
	AX = 7.5 (m)		DM 1 A1	
			(0	
			[14	

	Notes for Question	
Q (a)	First M1 for moments about P equation with usual rules (or moments about a different point AND vertical resolution and R then eliminated) (M0 if non-zero reaction at Q) Second M1 for moments about Q equation with usual rules (or moments about a different point AND vertical resolution) (M0 if non-zero reaction at P) Second A1 for a correct equation in M and same unknown. Third M1, dependent on first and second M marks, for solving for M Third A1 for 25 (kg) Fourth M1, dependent on first and second M marks, for solving for x Fourth A1 for 6 (m) N.B. No marks available if rod is assumed to be uniform but can score max 5/6 in part (b), provided they have found values for M and x to f.t. on. If they have just invented values for M and x in part (a), they can score the M marks in part (b) but not the A marks.	
Q (b)	First M1 for vertical resolution or a moments equation, with usual rules. First A1 ft on their M and x from part (a), for a correct equation. (must have equal reactions in vertical resolution to earn this mark) Second M1 for a moments equation with usual rules. Second A1 ft on their M and x from part (a), for a correct equation in R and same unknown length. Third M1, dependent on first and second M marks, for solving for AX (not their unknown length) with $AX \le 15$ Third A1 for $AX = 7.5$ (m) N.B. If a single equation is used (see below), equating the sum of the moments of the child and the weight about P to the sum of the moments of the child and the weight about Q , this can score M2 A2 ft on their M and x from part (a), provided the equation is in one unknown. Any method error, loses both M marks. e.g. $25g.4 + 50g(x - 2) = 25g.6 + 50g(12 - x)$ oe.	

Question Number	Scheme	Marks
	$T\cos\alpha - F = 2g\cos 60^{\circ}$	M1 A1
	$T\sin\alpha + R = 2g\cos 30^{\circ}$	M1 A1
	$F = \frac{1}{3}R$	B1
	eliminating F and R	DM1
	$T = g(1 + \frac{1}{\sqrt{3}})$, 1.6g (or better), 15.5, 15 (N)	DM1 A1
		(3
	Notes for Question	
Q	First M1 for resolving parallel to the plane with correct no. of terms and both T and $2g$ terms resolved. First A1 for a correct equation. (use of α instead of 30° or 60° or vice versa is an A error not M error; similarly if they use $\sin(3/5)$ or $\cos(4/5)$ when resolving, this can score M1A0) Second M1 for resolving perpendicular to the plane with correct no. of terms and both T and $2g$ terms resolved. Second A1 for a correct equation (use of α instead of 30° or 60° or vice versa is an A error not M error; similarly if they use $\sin(3/5)$ or $\cos(4/5)$ when resolving, this can score M1A0) B1 for $F = 1/3$ R seen or implied. Third M1, dependent on first two M marks and appropriate angles used when resolving in both equations, for eliminating F and R . Fourth M1 dependent on third M1, for solving for T Third A1 for $15(N)$ or $15.5(N)$. N.B. The first two M marks can be for two resolutions in any directions. Use of $\tan \alpha = 4/3$ leads to an answer of 17.83 and can score max $7/8$.	

Question Number	Scheme	Marks
(a)	For A , $T = 2ma$	B1
	For B, $3mg - T = 3ma$	M1 A1
	3mg = 5ma	DM1
	$\frac{3g}{5} = a$ (5.9 or 5.88 m s ⁻²)	A1
		(5)
(b)	T = 6mg/5; $12m$; $11.8m$	B1
		(1)
(c)	$F = \sqrt{T^2 + T^2}$	M1 A1 ft
	$F = \frac{6mg\sqrt{2}}{5}; 1.7mg \text{ (or better)}; 16.6m; 17m$	A1
	Direction clearly marked on a diagram, with an arrow, and 45° (oe) marked	B1
		(4)
		[10]
	Notes for Ossetion	
	Notes for Question	
Q (a)	B1 for $T = 2ma$ First M1 for resolving vertically (up or down) for B , with correct no. of terms. (allow omission of m , provided 3 is there) First A1 for a correct equation. Second M1, dependent on first M1, for eliminating T , to give an equation in a only. Second A1 for 0.6g, 5.88 or 5.9. N.B. 'Whole system' equation: $3mg = 5ma$ earns first 4 marks but any error loses all 4.	
Q (b)	B1 for $\frac{6mg}{5}$, 11.8m, 12m	
Q (c)	M1 $\sqrt{(T^2 + T^2)}$ or $\frac{T}{\sin 45^\circ}$ or $\frac{T}{\cos 45^\circ}$ or $2T\cos 45^\circ$ or $2T\sin 45^\circ$ (allow if m omitted) (M0 for $T \sin 45^\circ$) First A1 ft on their T . Second A1 cao for $\frac{6mg\sqrt{2}}{5}$ oe, $1.7mg$ (or better), $16.6m$, $17m$ B1 for the direction clearly shown on a diagram with an arrow and 45° marked.	

Question Number	Scheme	Marks	Notes
а	F B mg		
	Moments about A:	M1	Moments about A. Requires all three terms and terms of correct structure (force x distance). Condone consistent trig confusion
	$bF = a\cos\theta mg + 2a\cos\theta mg (= 3a\cos\theta mg)$	A2	-1 each error
	$F = \frac{3amg \cos \theta}{b} *Answer given*$	A1 [4]	
b	$\Rightarrow: H = F \sin \theta = \frac{3amg \cos \theta \sin \theta}{b}$	M1 A1	Resolve horizontally. Condone trig confusion RHS correct. Or equivalent.
	$\uparrow: 2mg = \pm V + F \cos\theta$	M1 A1	Resolve vertically. Condone sign error and trig confusion Correct equation
	$\pm V = 2mg - \frac{3amg\cos\theta}{b} \times \cos\theta \left(= 2mg - \frac{3amg\cos^2\theta}{b} \right)$	A1 [5]	RHS correct. Or equivalent

Question Number	Scheme	Marks	Notes
c	$\frac{2mg - \frac{3amg\cos^2\theta}{b}}{3amg\cos\theta\sin\theta} = \tan\theta$	M1	Use of tan, either way up. V, H, F
	$\frac{3amg\cos\theta\sin\theta}{b}$	A1	substituted. Correct for their components in θ only
	$\frac{2b - 3a\cos^2\theta}{3a\cos\theta\sin\theta} = \frac{\sin\theta}{\cos\theta}$	DM1	Simplify to obtain the ratio of a and b, or equivalent
	$3a\cos\theta\sin\theta \cos\theta$ $\Rightarrow 2b - 3a\cos^2\theta = 3a\sin^2\theta \Rightarrow 2b = 3a, \frac{a}{b} = \frac{2}{3}$	A1 [4]	equivalent
c alt 2	The centre of mass of the combined rod + particle is $\frac{3}{2}a$ from A	M1A1	
	E 2mg		
	3 forces in equilibrium must be concurrent $\Rightarrow b = \frac{3}{2}a$	M1	Not on the spec, but you might see it.
	$\Rightarrow \frac{a}{b} = \frac{2}{3}$	A1 [4]	
	R acts along the rod, so resolve forces perpendicular to the rod. $F = mg \cos \theta + mg \cos \theta$	M1	Resolve and substitute for F
alt c 3	$2mg\cos\theta = \frac{3amg\cos\theta}{b}$	A1	
		DM1	Eliminate θ
	$\Rightarrow \frac{a}{b} = \frac{2}{3}$	A1 [4]	

Question Number	Scheme	Marks	Notes
	R acts along the rod. Take moments about C		Moments about B gives
alt c 4	$mg\cos\theta \ 2a - b = mg\cos\theta \ b - a$	M1 A1	$2a-b$ $F = amg \cos \theta$ and substitute for F
	$2a-b=b-a$, $\Rightarrow \frac{a}{b} = \frac{2}{3}$	DM1A1	
		[4]	
c alt 5	Resultant parallel to the rod $\Rightarrow R = 2mg \sin \theta$	M1	Substitute for V , H and R in terms of θ
c alt 5	And $V^2 + H^2 = R^2$	IVII	
	$2mg\sin\theta^{2} = \left(\frac{3amg\cos\theta\sin\theta}{b}\right)^{2} + \left(2mg - \frac{3amg\cos^{2}\theta}{b}\right)^{2}$	A1	
	Eliminate θ	DM1	
	$\Rightarrow \frac{a}{-} = \frac{2}{-}$	A1	
	$\frac{a}{b} = \frac{1}{3}$	[4]	

Question Number	Scheme	Marks
(a)	$t = 0$ gives $\mathbf{v} = \mathbf{i} - 3\mathbf{j}$	B1
	speed = $\sqrt{1^2 + (-3)^2}$	M1
	$=\sqrt{10}=3.2$ or better	A1
		(3
(b)	$t = 2$ gives $\mathbf{v} = (-3\mathbf{i} + 3\mathbf{j})$	M1
	Bearing is 315°	A1
		(2
(c)(i)	$1 - 2t = 0 \Longrightarrow t = 0.5$	M1 A1
(ii)	-(3t-3) = -3(1-2t)	M1 A1
	Solving for t	DM1
	t = 2/3, 0.67 or better	A1
		((
		[11
	Notes for Question	
	Notes for Question	
Q (a)	B1 for $\mathbf{i} - 3\mathbf{j}$. M1 for $\sqrt{\text{(sum of squares of cpt.s)}}$ A1 for $\sqrt{10}$, 3.2 or better	
Q (b)	M1 for clear attempt to sub $t = 2$ into given expression. A1 for 315.	
Q (c)	 (i) First M1 for 1 - 2t = 0. First A1 for t = 0.5. N.B. If they offer two solutions, by equating both the i and j components to zero, give M0. (ii) First M1 for \(\frac{1-2t}{3t-3} = \pmu(\frac{-1}{-3}\)\) o.e. (Must be an equation in t only) First A1 for a correct equation (the + sign) Second M1, dependent on first M1, for solving for t. Second A1 for 2/3, 0.67 or better. 	

Question Number	Scheme	Marks	Notes				
a	$v = 0 = 2t^2 - 14t + 20$	M1	Set $v = 0$				
	=2 t-2 t-5	M1	Solve for t				
	t=2 or $t=5$	A1 [3]					
	There are many different approaches to part (b). The allocation of the two M marks is M1: A method to find the time when the velocity is a minimum M1: Evaluate the speed at that time						
e.g. b	t = 0 , $v = 20$ (m s ⁻¹)	B1					
	a = 4t - 14 = 0	M1					
	$t = \frac{7}{2}$, $v = 2 \times \frac{3}{2} \times \frac{-3}{2} = \frac{-9}{2}$	M1A1	Must see ±4.5				
	$Max speed = 20 ms^{-1}$	A1 [5]	Clearly stated & correct conclusion. Depends on the two M marks. From correct solution only.				
balt1	t = 0, $v = 20$ (m s ⁻¹)	B1					
	Sketch with symmetry about their $t = 3.5$	M1	T. 1				
	v(their 3.5) -4.5	M1 A1	Evaluate v at min. Correct work				
	Max speed = 20 ms^{-1}	A1 [5]	Clearly stated & correct conclusion. Depends on the two M marks. From correct solution only.				
b alt 2	$t = 0$, $v = 20 \text{ (m s}^{-1})$	B1					
	Justification of minimum or tabulate sufficient values to confirm location	M1					
	Evaluate v at min.	M1					
	Correct work	A1					
	Correct conclusion. Depends on the two M marks	A1 [5]	Clearly stated & from correct solution only.				

Question Number	Scheme	Marks	Notes
b alt 3	t = 0 , $v = 20$ (m s ⁻¹)	B1	
	Complete the square as far as $\left(t - \frac{7}{2}\right)^2$	M1	
	$2\left(t-\frac{7}{2}\right)^2-\frac{9}{2}$	M1A1	
	Max speed = 20 ms ⁻¹	A1 [5]	Clearly stated & correct conclusion. Depends on the two M marks. From correct solution only.
c	$\int 2t^2 - 14t + 20 dt = \frac{2}{3}t^3 - 7t^2 + 20t(+C)$	M1	Integration. Need to see majority of powers going up
		A1	All correct. Condone C missing
	Distance = $\left[\frac{2}{3}t^3 - 7t^2 + 20t\right]^2 - \left[\frac{2}{3}t^3 - 7t^2 + 20t\right]^4$	M1	Correct method to find the distance, for their 2
	[3	A1	Correct unsimplified
	$=2\times\left[\frac{2}{3}t^3-7t^2+20t\right]^2-\left[\frac{2}{3}t^3-7t^2+20t\right]_4$		
	$= 2\left[\frac{16}{3} - 7 \times 4 + 40\right] - \left[\frac{2 \times 64}{3} - 7 \times 16 + 80\right] = 24 \text{ (m)}$	A1 [5]	

Question Number	Scheme	Marks	Notes
a	Conservation of energy:	M1	Energy equation must contain the correct terms, but condone sign error.
	$\frac{1}{2}mu^2 + mg \times 8 = \frac{1}{2}m \ 2u^2$ $mu^2 + 16mg = 4mu^2$	A2 -1ee	Correct unsimplified
	$16mg = 3mu^2$, $u = \sqrt{\frac{16g}{3}}$	DM1	Solve for u
	u = 7.2	A1 [5]	Accept 7.23. Accept $\sqrt{\frac{16g}{3}}$
ь	Vertical distance: $-8 = u \sin \theta \times 2 - \frac{g}{2} \times 4$	M1	Condone sign errors or trig error. u must be resolved.
	$\sin\theta = \frac{2g - 8}{2u} = 0.802$	A2 -1ee	Correct equation for their u.
	$\theta = 53.3^{\circ}$	A1 [4]	or 53°
c	Min speed at max height, i.e. $u \cos \theta$ = 4.3 (m s ⁻¹)	M1 A1 [2]	Condone consistent trig confusion with part (b) or 4.32 (ms ⁻¹)