Name:

Total Marks:

A level Applied Mathematics Paper 3B Mechanics

Practice Paper M13

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 106.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

A lorry is moving along a straight horizontal road with constant acceleration. The lorry passes a point *A* with speed $u \text{ m s}^{-1}$, (u < 34), and 10 seconds later passes a point *B* with speed 34 m s⁻¹. Given that *AB* = 240 m, find

		(Total 9 marks)
(b)	the time taken for the lorry to move from A to the mid-point of AB.	(6)
(a)	the value of <i>u</i> ,	(3)

Question 2

A car is travelling along a straight horizontal road. The car takes 120 s to travel between two sets of traffic lights which are 2145 m apart. The car starts from rest at the first set of traffic lights and moves with constant acceleration for 30 s until its speed is 22 m s⁻¹. The car maintains this speed for *T* seconds. The car then moves with constant deceleration, coming to rest at the second set of traffic lights.

(a)	Sketch, in the space below, a speed-time graph for the motion of the car between the two sets of	
traff	ic lights.	(2)
(b)	Find the value of <i>T</i> .	(3)

A motorcycle leaves the first set of traffic lights 10 s after the car has left the first set of traffic lights. The motorcycle moves from rest with constant acceleration, $a \text{ m s}^{-2}$, and passes the car at the point A which is 990 m from the first set of traffic lights. When the motorcycle passes the car, the car is moving with speed 22 m s⁻¹.

- (c) Find the time it takes for the motorcycle to move from the first set of traffic lights to the point A. (4)
- (d) Find the value of *a*.

(Total 11 marks)

(2)

A woman travels in a lift. The mass of the woman is 50 kg and the mass of the lift is 950 kg. The lift is being raised vertically by a vertical cable which is attached to the top of the lift. The lift is moving upwards and has constant deceleration of 2 m s⁻². By modelling the cable as being light and inextensible, find

		(Total 6 marks)
(b)	the magnitude of the force exerted on the woman by the floor of the lift.	(3)
(a)	the tension in the cable,	(3)

Question 4

A beam *AB* has length 15 m. The beam rests horizontally in equilibrium on two smooth supports at the points *P* and *Q*, where AP = 2 m and QB = 3 m. When a child of mass 50 kg stands on the beam at *A*, the beam remains in equilibrium and is on the point of tilting about *P*. When the same child of mass 50 kg stands on the beam at *B*, the beam remains in equilibrium and is on the point of tilting about *P*. When the point of tilting about *Q*. The child is modelled as a particle and the beam is modelled as a non-uniform rod.

(a)(i) Find the mass of the beam.

(ii) Find the distance of the centre of mass of the beam from *A*. (8)

When the child stands at the point X on the beam, it remains horizontal and in equilibrium. Given that the reactions at the two supports are equal in magnitude,

(b) find AX.

(6)

(Total 14 marks)

Figure 1

A box of mass 2 kg is held in equilibrium on a fixed rough inclined plane by a rope. The rope lies in a vertical plane containing a line of greatest slope of the inclined plane. The rope is inclined to the plane at an angle α , where tan $\alpha = \frac{3}{4}$, and the plane is at an angle of 30° to the horizontal, as shown in Figure 1. The coefficient of friction between the box and the inclined plane is $\frac{1}{3}$ and the box is on the point of slipping up the plane. By modelling the box as a particle and the rope as a light inextensible string, find the tension in the rope. (8)

(Total 8 marks)

Figure 2

Two particles *A* and *B* have masses 2*m* and 3*m* respectively. The particles are attached to the ends of a light inextensible string. Particle *A* is held at rest on a smooth horizontal table. The string passes over a small smooth pulley which is fixed at the edge of the table. Particle *B* hangs at rest vertically below the pulley with the string taut, as shown in Figure 2. Particle *A* is released from rest. Assuming that *A* has not reached the pulley, find

		(Total 10 marks)
(c)	the magnitude and direction of the force exerted on the pulley by the string.	(4)
(b)	the tension in the string,	(1)
(a)	the acceleration of <i>B</i> ,	(5)

Figure 3

A uniform rod *AB*, of mass *m* and length 2*a*, is freely hinged to a fixed point *A*. A particle of mass *m* is attached to the rod at *B*. The rod is held in equilibrium at an angle θ to the horizontal by a force of magnitude *F* acting at the point *C* on the rod, where *AC* = *b*, as shown in Figure 3. The force at *C* acts at right angles to *AB* and in the vertical plane containing *AB*.

(a) Show that
$$F = \frac{b}{b}$$
. (4)

(b) Find, in terms of a, b, g, m and θ ,

а

- (i) the horizontal component of the force acting on the rod at A,
- (ii) the vertical component of the force acting on the rod at A.

Given that the force acting on the rod at A acts along the rod,

(c) find the value of b

(4) (Total 13 marks)

(5)

[In this question, the horizontal unit vectors **i** and **j** are directed due east and due north respectively.] The velocity, **v** m s⁻¹, of a particle *P* at time *t* seconds is given by

$$\mathbf{v} = (1 - 2t)\mathbf{i} + (3t - 3)\mathbf{j}$$

	7)	「otal 11 marks)
((ii) parallel to (− i − 3j).	(6)
((i) parallel to j ,	
(c)	Find the value of <i>t</i> when <i>P</i> is moving	
(b)	Find the bearing on which <i>P</i> is moving when $t = 2$	(2)
(a)	Find the speed of P when $t = 0$	(3)

Question 9

A particle *P* moves on the *x*-axis. At time *t* seconds the velocity of *P* is $v \text{ m s}^{-1}$ in the direction of *x* increasing, where

$$v = 2t^2 - 14t + 20, \quad t \ge 0$$

Find

	(Тс	otal 13 marks)
(c)	the total distance travelled by <i>P</i> in the interval $0 \le t \le 4$	(5)
(b)	the greatest speed of <i>P</i> in the interval $0 \le t \le 4$	(5)
(a)) the times when <i>P</i> is instantaneously at rest,	(3)

Figure 4

A ball is projected from a point *A* which is 8 m above horizontal ground as shown in Figure 4. The ball is projected with speed u m s⁻¹ at an angle θ° above the horizontal. The ball moves freely under gravity and hits the ground at the point *B*. The speed of the ball immediately before it hits the ground is 2u m s⁻¹.

		(Total 11 marks)
(c)	the minimum speed of the ball on its path from A to B.	(2)
(b)	the value of θ ,	(4)
The	e time taken for the ball to move from A to B is 2 seconds. Find	
(a)	By considering energy, find the value of <i>u</i> .	(5)

TOTAL FOR PAPER IS 106 MARKS