Name:

Total Marks:

Pure

Mathematics 2

Advanced Level

Practice Paper J10

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 13 questions in this question paper
- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Show that, for a small angle θ , where θ is in radians,

$$1 + \cos Q - 3\cos^2 Q \approx -1 + \frac{5}{2}Q^2$$
 (3)
(Total 3 marks)

Question 2

Figure 1

An emblem, as shown in Figure 1, consists of a triangle *ABC* joined to a sector *CBD* of a circle with radius 4 cm and centre *B*. The points *A*, *B* and *D* lie on a straight line with AB = 5 cm and BD = 4 cm. Angle *BAC* = 0.6 radians and *AC* is the longest side of the triangle *ABC*.

(a) Show that angle $ABC = 1.76$ radians, correct to 3 significant figures.	(4)
---	-----

(b) Find the area of the emblem.

(3)

Question 3

A car was purchased for £18 000 on 1st January.

On 1st January each following year, the value of the car is 80% of its value on 1st January in the previous year.

(a) Show that the value of the car exactly 3 years after it was purchased is £921	6. (1)
The value of the car falls below £1000 for the first time n years after it was purch	nased.
(b) Find the value of <i>n</i> .	(3)
An insurance company has a scheme to cover the maintenance of the car. The cost is £200 for the first year, and for every following year the cost increases 3rd year the cost of the scheme is £250.88	s by 12% so that for the
(c) Find the cost of the scheme for the 5th year, giving your answer to the neares	st penny. (2)
(d) Find the total cost of the insurance scheme for the first 15 years.	(3)

(a) Find the binomial expansion of

$$\sqrt{(1-8)}$$
, $|x| < \frac{1}{8}$,

in ascending powers of x up to and including the term in x^3 , simplifying each term. (4)

(b) Show that, when $x = \frac{\sqrt{23}}{5}$, the exact value of $\sqrt{(1 - 8x)}$ is $\frac{\sqrt{23}}{5}$, (2)

(c) Substitute $\chi = \frac{\sqrt{23}}{5}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{23}$. Give your answer to 5 decimal places. (3)

(3)

(3)

Question 5

The curve C has the equation

$$\cos 2x + \cos 3y = 1, \qquad -\frac{\pi}{4} \le x \le \frac{\pi}{4}, \quad 0 \le y \le \frac{\pi}{6}$$

(a) Find $\frac{1}{dx}$ in terms of x and y.

The point *P* lies on *C* where $x = \frac{\pi}{6}$.

(b) Find the value of y at P.

(c) Find the equation of the tangent to *C* at *P*, giving your answer in the form $ax + by + c\pi = 0$, where *a*, *b* and *c* are integers. (3)

Question 6

(a) By writing
$$\sec x \text{ as } \frac{1}{\cos x}$$
, show that $\frac{d(\sec x)}{dx} = \sec x \tan x.$ (3)
Given that $y = e^{2x} \sec 3x$,
(b) find $\frac{dy}{dx}$. (4)

The curve with equation $y = e^{2x} \sec 3x$, $-\frac{\pi}{6} < x < \frac{\pi}{6}$, has a minimum turning point at (a, b). (c) Find the values of the constants *a* and *b*, giving your answers to 3 significant figures. (4)

(Total 11 marks)

Solve $\csc^2 2x - \cot 2x = 1$

(Total 7 marks)

(7)

Question 8

The area A of a circle is increasing at a constant rate of $1.5 \text{ cm}^2 \text{ s}^{-1}$. Find, to 3 significant figures, the rate at which the radius *r* of the circle is increasing when the area of the circle is 2 cm^2 . (5)

(Total 5 marks)

Question 9

(i) Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$.	(4)
(ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.	(5)
	(Total 9 marks)

Question 10

Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of

$$\frac{1}{x^2 \sqrt{4-x^2}} dx$$

(Total 7 marks)

(7)

Question 11

(a) Find
$$\int \frac{9x+6}{x} \, dx, \quad x > 0$$
 (2)

(b) Given that y = 8 at x = 1, solve the differential equation

 $\frac{dy}{dx} = \frac{(9x+6)y^{\frac{1}{3}}}{x}$ giving your answer in the form $y^2 = g(x)$. (6) (Total 8 marks)

Figure 1

Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis and the line x = 4.

(a) Use integration by parts to find $\int x \ln x \, dx$.

(b) Hence find the exact area of *R*, giving your answer in the form $\frac{1}{4}$ (*a* ln 2 + *b*) where *a* and *b* are integers. (7)

(Total 7 marks)

The region R, as shown shaded in Figure 2, is enclosed by the loop of the curve.

(b) Use integration to find the area of *R*.

(6)

(Total 9 marks)

TOTAL FOR PAPER IS 100 MARKS