Name:

Pure

Mathematics 2

Advanced Level

Practice Paper J11

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

The function f is defined by

$$
\mathrm{f}: x \rightarrow \frac{3-2 x}{x-5}, x \in \mathrm{R}, x \neq 5
$$

(a) Find $\mathrm{f}^{-1}(x)$.

Figure 2
The function g has domain $-1 \leqslant x \leqslant 8$, and is linear from $(-1,-9)$ to $(2,0)$ and from $(2,0)$ to $(8,4)$. Figure 2 shows a sketch of the graph of $y=g(x)$.
(b) Write down the range of g .
(c) Find gg(2).
(d) Find $\mathrm{fg}(8)$.
(e) On separate diagrams, sketch the graph with equation
(i) $y=|\lg (x)|$,
(ii) $y=g^{-1}(x)$.

Show on each sketch the coordinates of each point at which the graph meets or cuts the axes.
(f) State the domain of the inverse function g^{-1}.

Question 2

(a) Express

$$
\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}
$$

as a single fraction in its simplest form.
Given that

$$
\mathrm{f}(x)=\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}-2, \quad x>1
$$

(b) show that

$$
\begin{equation*}
\mathrm{f}(x)=\frac{3}{2 x-1} \tag{2}
\end{equation*}
$$

(c) Hence differentiate $f(x)$ and find $f^{\prime}(2)$

Question 3

(a) Use the binomial theorem to expand

$$
(2-3 x)^{-2}, \quad|x|<\frac{2}{3}
$$

in ascending powers of x, up to and including the term in x^{3}. Give each coefficient as a simplified fraction.

$$
f(x)=\frac{a+b x}{(2-3 x)^{2}}, \quad|x|<\frac{2}{3}, \quad \text { where } a \text { and } b \text { are constants. }
$$

In the binomial expansion of $f(x)$, in ascending powers of x, the coefficient of x is 0 and the coefficient of x^{2} is $\frac{9}{16}$.

Find
(b) the value of a and the value of b,
(c) the coefficient of x^{3}, giving your answer as a simplified fraction.

Question 4

(a) Express $7 \cos x-24 \sin x$ in the form $R \cos (x+a)$ where $R>0$ and $<a<\frac{\pi}{2}$.

Give the value of a to 3 decimal places.
(b) Hence write down the minimum value of $7 \cos x-24 \sin x$.
(c) Solve, for $0 \leqslant x<2 \pi$, the equation

$$
7 \cos x-24 \sin x=10
$$

giving your answers to 2 decimal places.

Question 5

The curve C has equation

$$
y=\frac{3+\sin 2 x}{2+\cos 2 x}
$$

(a) Show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 \sin 2 x+4 \cos 2 x+2}{(2+\cos 2 x)^{2}} \tag{4}
\end{equation*}
$$

(b) Find an equation of the tangent to C at the point on C where $x=\frac{\pi}{2}$.

Write your answer in the form $y=a x+b$, where a and b are exact constants.

Question 6

Use integration to find the exact value of

$$
\int_{0}^{\frac{\pi}{2}} x \sin 2 x \mathrm{~d} x
$$

Question 7

$$
I=\int_{2}^{5} \frac{1}{4+\sqrt{ }(x-1)} \mathrm{d} x
$$

(a) Given that $y=\frac{1}{4+\sqrt{(x-1)}}$, complete the table below with values of y corresponding to $x=3$ and $x=5$. Give your values to 4 decimal places.

x	2	3	4	5
y	0.2		0.1745	

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer
to 3 decimal places.
(c) Using the substitution $x=(u-4)^{2}+1$, or otherwise, and integrating, find the exact value of l.

Question 8

Find all the solutions

$$
2 \cos 2 \theta=1-2 \sin \theta
$$

in the interval $0 \leqslant \theta<360^{\circ}$

Question 9

(a) Given that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\cos x)=-\sin x
$$

show that $\frac{\mathrm{d}}{\mathrm{d} x}(\sec x) \sec x \tan x$.
Given that

$$
x=\sec 2 y
$$

(b) find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of y.
(c) Hence find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.

Question 10

(a) Express $\frac{5}{(x-1)(3 x+2)}$ in partial fractions.
(b) Hence find $\int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x$, where $x>1$.
(c) Find the particular solution of the differential equation

$$
(x-1)(3 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y, \quad x>1
$$

for which $y=8$ at $x=2$. Give your answer in the form $y=\mathrm{f}(x)$.

TOTAL FOR PAPER IS 100 MARKS

