Name:

Pure

Mathematics 2

Advanced Level

Practice Paper J8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 1-2 x^{3}, x \in \mathbb{R} \\
& \mathrm{~g}: x \mapsto \frac{3}{x}-4, x>0, x \in \mathbb{R}
\end{aligned}
$$

(a) Find the inverse function f^{-1}.
(b) Show that the composite function gf is

$$
\begin{equation*}
\text { gf }: x \mapsto \frac{8 x^{3}-1}{1-2 x^{3}} \tag{4}
\end{equation*}
$$

(c) Solve gf $(x)=0$.

Question 2

(a) Use the binomial theorem to expand

$$
(8-3 x)^{\frac{1}{3}}, \quad|x|<\frac{8}{3},
$$

in ascending powers of x, up to and including the term in x^{3}, giving each term as a simplified fraction.
(b) Use your expansion, with a suitable value of x, to obtain an approximation to $\sqrt[3]{(7.7)}$. Give your answer to 7 decimal places.

Question 3

A curve C has equation

$$
y=\mathrm{e}^{2 x} \tan x, \quad x \neq(2 n+1) \frac{\pi}{2} .
$$

(a) Show that the turning points on C occur where $\tan x=-1$.
(b) Find an equation of the tangent to C at the point where $x=0$.

Question 4

A curve is described by the equation

$$
x^{3}-4 y^{2}=12 x y .
$$

(a) Find the coordinates of the two points on the curve where $x=-8$.
(b) Find the gradient of the curve at each of these points.

Question 5

A curve C has equation

$$
y=3 \sin 2 x+4 \cos 2 x,-\pi \leq x \leq \pi
$$

The point $A(0,4)$ lies on C.
(a) Find an equation of the normal to the curve C at A.
(b) Express y in the form $R \sin (2 x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.

Give the value of α to 3 significant figures.

Find the coordinates of the points of intersection of the curve C with the x-axis.
Give your answers to 2 decimal places.

Question 6

$f(x)=\ln (x+2)-x+1, \quad x>-2, x \in \mathbb{R}$.
(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $2<x<3$.
(b) Use the iterative formula

$$
x_{n+1}=\ln \left(x_{n}+2\right)+1, x_{0}=2.5
$$

to calculate the values of x_{1}, x_{2} and x_{3} giving your answers to 5 decimal places.
(c) Show that $x=2.505$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.

Question 7

(i) Find $\int \ln \left(\frac{x}{2}\right) \mathrm{d} x$.
(ii) Find the exact value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin ^{2} x d x$

Question 8

(a) Use the double angle formulae and the identity
$\cos (A+B) \equiv \cos A \cos B-\sin A \sin B$
to obtain an expression for $\cos 3 x$ in terms of powers of $\cos x$ only.
(b) (i) Prove that

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x} \equiv 2 \sec x, \quad x \neq(2 n+1) \frac{\pi}{2} . \tag{4}
\end{equation*}
$$

(ii) Hence find, for $0<x<2 \pi$, all the solutions of

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}=4 \tag{3}
\end{equation*}
$$

Question 9

Figure 3
The curve C has parametric equations

$$
x=\ln (t+2), \quad y=\frac{1}{(t+1)}, \quad t>-1 .
$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x=I_{n} 2$ and x $=I_{n} 4$, is shown shaded in Figure 3.
(a) Show that the area of R is given by the integral

$$
\begin{equation*}
\int_{0}^{2} \frac{1}{(t+1)(t+2)} \mathrm{d} t \tag{4}
\end{equation*}
$$

(b) Hence find an exact value for this area.
(c) Find a cartesian equation of the curve C, in the form $y=f(x)$.
(d) State the domain of values for x for this curve.

Question 10

Liquid is pouring into a large vertical circular cylinder at a constant rate of $1600 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is $4000 \mathrm{~cm}^{2}$.
(a) Show that at time t seconds, the height $h \mathrm{~cm}$ of liquid in the cylinder satisfies the differential equation $\mathrm{d} h$
$\mathrm{d} t=0.4-k \sqrt{ } h$, where k is a positive constant.

When $h=25$, water is leaking out of the hole at $400 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(b) Show that $k=0.02$
(c) Separate the variables of the differential equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=0.4-0.02 \sqrt{ } h
$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$
\int_{0}^{100} \frac{50}{20-\sqrt{h}} \mathrm{~d} h
$$

Using the substitution $h=(20-x)^{2}$, or otherwise,
(d) find the exact value of $\int_{0}^{100} \frac{50}{20-\sqrt{h}} \mathrm{~d} h$.
(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm , giving your answer in minutes and seconds to the nearest second.

