

Pure Mathematics 2 Practice Paper J9 MARK SCHEME

Question 1

Question Number	Scheme	Marks
(a)	attempt evaluation of f(1.1) and f(1.2) (-looking for sign change)	M1
	$f(1.1) = 0.30875$, $f(1.2) = -0.28199$ Change of sign in $f(x) \Rightarrow$ root in the interval	A1 (2)
(b)	$\mathbf{f}'(x) = \frac{3}{2}x^{-\frac{1}{2}} - 9x^{-\frac{1}{2}}$	M1 A1 A1 (3)
(c)	f(1.1) = 0.30875 $f'(1.1) = -6.37086$	B1 B1
	$x_1 = 1.1 - \frac{0.30875}{-6.37086}$	M1
	= 1.15(to 3 sig.figs.)	A1 (4) [9]

Notes:

- (a) awrt 0.3 and -0.3 and indication of sign change for first A1
- (b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1
- (c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect

Evidence of Newton-Raphson for M1

Evidence of Newton-Raphson and awrt 1.15 award 4/4

Question Number	Scheme		Marks
(a)	$27x^{2} + 32x + 16 = A(3x+2)(1-x) + B(1-x) + C(3x+2)^{2}$	Forming this identity	M1
	$x = -\frac{2}{3}, 12 - \frac{84}{3} + 16 = \left(\frac{5}{3}\right)B \implies \frac{20}{3} = \left(\frac{5}{3}\right)B \implies B = 4$ $x = 1, \qquad 27 + 32 + 16 = 25C \implies 75 = 25C \implies C = 3$	Substitutes either $x = -\frac{2}{3}$ or $x = 1$ into their identity or equates 3 terms or substitutes in values to write down three simultaneous equations. Both $B = 4$ and $C = 3$ (Note the A1 is dependent on both method marks in this part.)	M1 A1
	Equate x^2 : $27 = -3A + 9C \Rightarrow 27 = -3A + 27 \Rightarrow 0 = -3A$ $\Rightarrow A = 0$ x = 0, $16 = 2A + B + 4C\Rightarrow 16 = 2A + 4 + 12 \Rightarrow 0 = 2A \Rightarrow A = 0$	Compares coefficients or substitutes in a third x -value or uses simultaneous equations to show $A = 0$.	B1 (4)
(b)	$f(x) = \frac{4}{(3x+2)^2} + \frac{3}{(1-x)}$ $= 4(3x+2)^{-2} + 3(1-x)^{-1}$ $= 4\left[2(1+\frac{3}{2}x)^{-2}\right] + 3(1-x)^{-1}$ $= 1(1+\frac{3}{2}x)^{-2} + 3(1-x)^{-1}$	Moving powers to top on any one of the two expressions	M1
	$= 1 \left\{ \underbrace{1 + (-2)(\frac{3x}{2})}_{;} + \underbrace{\frac{(-2)(-3)}{2!}(\frac{3x}{2})^2 + \dots}_{;} \right\} $ $+ 3 \left\{ \underbrace{1 + (-1)(-x)}_{;} + \underbrace{\frac{(-1)(-2)}{2!}(-x)^2 + \dots}_{;} \right\}$	Either $1 \pm (-2)(\frac{3\pi}{2})$ or $1 \pm (-1)(-x)$ from either first or second expansions respectively Ignoring 1 and 3, any one correct $\{\underline{\dots}\}$ expansion. Both $\{\underline{\dots}\}$ correct.	dM1; A1 A1
	$= \left\{1 - 3x + \frac{27}{4}x^2 + \dots\right\} + 3\left\{1 + x + x^2 + \dots\right\}$ $= 4 + 0x ; +\frac{39}{4}x^2$	$4+(0x)$; $\frac{39}{4}x^2$	A1; A1 (6
Question Number	Scheme		Marks
(c)	Actual = $f(0.2) = \frac{1.08 + 6.4 + 16}{(6.76)(0.8)}$ = $\frac{23.48}{5.408} = 4.341715976 = \frac{2935}{676}$ Or Actual = $f(0.2) = \frac{4}{(3(0.2) + 2)^2} + \frac{3}{(1 - 0.2)}$ = $\frac{4}{6.76} + 3.75 = 4.341715976 = \frac{2935}{676}$	Attempt to find the actual value of $f(0.2)$ or seeing awrt 4.3 and believing it is candidate's actual $f(0.2)$. Candidates can also attempt to find the actual value by using $\frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)}$ with their A , B and C .	M1
	Estimate = $f(0.2) = 4 + \frac{39}{4}(0.2)^2$ = $4 + 0.39 = 4.39$	Attempt to find an estimate for f(0.2) using their answer to (b)	м₁√
	%age error = $\frac{ 4.39 - 4.341715976 }{4.341715976} \times 100$	their estimate - actual actual	M1
	-1.112095408 1.1%(2sf)	1.1%	A1 cao (4
			[14]

Question Number	Scheme		Ma	rks
(a)	At A, $x = -1 + 8 = 7$ & $y = (-1)^2 = 1 \Rightarrow A(7,1)$	A(7,1)	B1	(1)
(b)	$x = t^3 - 8t , y = t^2,$ $\frac{dx}{dt} = 3t^2 - 8, \frac{dy}{dt} = 2t$			
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t}{3t^2 - 8}$	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ Correct $\frac{dy}{dt}$	M1 A1	
	At A, $m(T) = \frac{2(-1)}{3(-1)^2 - 8} = \frac{-2}{3 - 8} = \frac{-2}{-5} = \frac{2}{5}$	Substitutes for t to give any of the four underlined oe:		
	T: $y - (\text{their 1}) = m_T (x - (\text{their 7}))$	Finding an equation of a tangent with their point and their tangent gradient		
	or $1 = \frac{2}{5}(7) + c \implies c = 1 - \frac{14}{5} = -\frac{9}{5}$ Hence $\mathbf{T}: y = \frac{2}{5}x - \frac{9}{5}$	or finds c and uses $y = (\text{their gradient})x + "c"$.	dM1	
	gives T: $2x - 5y - 9 = 0$ AG	2x-5y-9=0	A1	cso (5)
(c)	$2(t^3 - 8t) - 5t^2 - 9 = 0$	Substitution of both $x = t^3 - 8t$ and $y = t^2$ into T	M1	
	$2t^{3} - 5t^{2} - 16t - 9 = 0$ $(t+1)\left\{(2t^{2} - 7t - 9) = 0\right\}$			
		A realisation that $(t+1)$ is a factor.	dM1	
	$(t+1)\{(t+1)(2t-9)=0\}$ $\{t=-1 \text{ (at } A)\}\ t=\frac{9}{2} \text{ at } B$	$t = \frac{9}{2}$	A1	
	$x = \left(\frac{9}{2}\right)^2 - 8\left(\frac{9}{2}\right) = \frac{729}{8} - 36 = \frac{441}{8} = 55.125 \text{ or awrt } 55.1$	Candidate uses their value of t to find either the x or y coordinate	ddM1	ı
	$y = \left(\frac{9}{2}\right)^2 = \frac{81}{4} = 20.25 \text{ or awrt } 20.3$ Hence $B\left(\frac{441}{8}, \frac{81}{4}\right)$	One of either x or y correct. Both x and y correct. awrt	A1 A1	(6)
				[12]

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{(5x-1)} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left((5x-1)^{\frac{1}{2}} \right)$	
	$=5 \times \frac{1}{2} (5x-1)^{-\frac{1}{2}}$	M1 A1
	$\frac{dy}{dx} = 2x\sqrt{(5x-1)} + \frac{5}{2}x^2(5x-1)^{-\frac{1}{2}}$	M1 A1ft
	At $x = 2$, $\frac{dy}{dx} = 4\sqrt{9} + \frac{10}{\sqrt{9}} = 12 + \frac{10}{3}$	M1
	$=\frac{46}{3}$ Accept awrt 15.3	A1 (6)
(b)	$\frac{d}{dx} \left(\frac{\sin 2x}{x^2} \right) = \frac{2x^2 \cos 2x - 2x \sin 2x}{x^4}$	M1 A1+A1 A1 (4) [10]
	Alternative to (b) $\frac{d}{dx} \left(\sin 2x \times x^{-2} \right) = 2 \cos 2x \times x^{-2} + \sin 2x \times (-2) x^{-3}$	M1 A1 + A1
	$= 2x^{-2}\cos 2x - 2x^{-3}\sin 2x \left(= \frac{2\cos 2x}{x^2} - \frac{2\sin 2x}{x^3} \right)$	A1 (4)

Question Number	Scheme		Marks
	(' ')	Follow through their $\frac{dx}{dy}$ before or after substitution	M1 A1 A1ft B1 M1 A1 (6) [6]

Question Number	Schem	е	Marks
(a)	Similar triangles $\Rightarrow \frac{r}{h} = \frac{16}{24} \Rightarrow r = \frac{2h}{3}$	Uses similar triangles, ratios or trigonometry to find either one of these two expressions oe.	M1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{2h}{3}\right)^2 h = \frac{4\pi h^3}{27} AG$	Substitutes $r = \frac{2h}{3}$ into the formula for the volume of water V .	A1 (2)
(b)	From the question, $\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	$\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} = \frac{4\pih^2}{9}$	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pi h^2}{27} \text{ or } \frac{4\pi h^2}{9}$	B1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} = 8 \times \frac{9}{4\pi h^2} = \frac{18}{\pi h^2}$	Candidate's $\frac{dV}{dt} \div \frac{dV}{dh}$; $8 \div \left(\frac{12\pi h^2}{27}\right)$ or $8 \times \frac{9}{4\pi h^2}$ or $\frac{18}{\pi h^2}$ oe	
	When $h = 12$, $\frac{dh}{dt} = \frac{18}{144\pi} = \frac{1}{8\pi}$	$\frac{18}{144\pi} \text{ or } \frac{1}{8\pi}$	A1 oe isw
	Note the answer must be a one term exact value. Note, also you can ignore subsequent working		(5)
	after $\frac{18}{144\pi}$		
			[7]

Question Number	Scheme		Narks
(a)	Area(R) = $\int_{0}^{2} \frac{3}{\sqrt{(1+4x)}} dx = \int_{0}^{2} 3(1+4x)^{-\frac{1}{2}} dx$		
	= 14	$\pm k(1+4x)^{-\frac{1}{2}}$ to give $\pm k(1+4x)^{\frac{1}{2}}$. M1 rect integration. Ignore limits.	
	$= \left[\frac{3}{2}(1+4x)^{\frac{1}{3}}\right]_0^2$		
	$= \left(\frac{3}{2}\sqrt{9}\right) - \left(\frac{3}{2}(1)\right)$ Substitutes limits of changed function a correction of the corre		
	$=\frac{9}{2}-\frac{3}{2}=\underline{3} \text{ (units)}^2$	3 <u>A1</u>	,
	(Answer of 3 with no working scores M0A0M0A0.)		(4

Question lumber	Scheme		Marks
(a)	$\int \tan^2 x dx$		
	$[NB: \underline{\sec^2 A = 1 + \tan^2 A} \text{ gives } \underline{\tan^2 A = \sec^2 A - 1}]$	The correct <u>underlined identity</u> .	M1 oe
	$= \int \sec^2 x - 1 \mathrm{d}x$		
	$= \frac{\tan x - x}{(+c)}$	Correct integration with/without + c	A1 (
(b)	$\int \frac{1}{x^3} \ln x dx$		
	$\begin{cases} u - \ln x & \Rightarrow \frac{dx}{dx} = \frac{1}{x} \\ \frac{dx}{dx} = x^{-3} & \Rightarrow v = \frac{x^{-2}}{-2} = \frac{-1}{2x^{2}} \end{cases}$		
	$= -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} dx$ Corre	Use of 'integration by parts' formula in the correct direction. ct direction means that $u = \ln x$.	M1
		Correct expression.	A1
	$-\frac{1}{2x^2}\ln x + \frac{1}{2}\int \frac{1}{x^3} dx$	An attempt to multiply through	
	200	$\frac{\kappa}{x^n}$, $n \in \square$, $n \dots 2$ by $\frac{1}{x}$ and an	
	$-\frac{1}{2x^2}\ln x + \frac{1}{2}\left(-\frac{1}{2x^2}\right)(+c)$	attempt to "integrate"(process the result);	M1
		correct solution with/without + c	A1 oe
		correct solution with without + c	A1 00
uestion umber	Scheme		Marks
(c)	$\int \frac{e^{3x}}{1+e^x} dx$		
	$\left\{u=1+e^x \ \Rightarrow \frac{\mathrm{d} u}{\mathrm{d} x}=e^x \ . \ \frac{\mathrm{d} x}{\mathrm{d} u}=\frac{1}{e^x} . \ \frac{\mathrm{d} x}{\mathrm{d} u}=\frac{1}{u-1}\right\}$	Differentiating to find any one of the <u>three underlined</u>	<u>B1</u>
	$\int e^{2x} \cdot e^{x} \cdot \int (u-1)^{2} \cdot e^{x} \cdot 1$	Attempt to substitute for $e^{2x} = f(u)$,	
	$= \int \frac{e^{2x} \cdot e^{x}}{1 + e^{x}} dx = \int \frac{(u - 1)^{2} \cdot e^{x}}{u} \cdot \frac{1}{e^{x}} du$	their $\frac{dx}{du} = \frac{1}{e^x}$ and $u = 1 + e^x$	M1*
	or = $\int \frac{(u-1)^3}{u} \cdot \frac{1}{(u-1)} du$	or $e^{3x} = f(u)$, their $\frac{dx}{du} = \frac{1}{u-1}$ and $u = 1 + e^x$.	MI
	$(u-1)^2$.	$\int \frac{(u-1)^2}{u} du$	A1
	$-\int \frac{(u-1)^2}{u} du$	<u> </u>	AI
	$= \int \frac{u^2 - 2u + 1}{u} \mathrm{d}u$	An attempt to multiply out their numerator	
	$= \int u - 2 + \frac{1}{u} du$	to give at least three terms and divide through each term by u	dM1*
	$-\frac{u^2}{2} - 2u + \ln u \ (+c)$	Correct integration with/without +c	A1
	$= \frac{(1 + e^{x})^{2}}{2} - 2(1 + e^{x}) + \ln(1 + e^{x}) + c$	Substitutes $u = 1 + e^x$ back into their integrated expression with at least two terms.	dM1*
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$=\frac{1}{2}e^{2x}-e^x+\ln(1+e^x)-\frac{3}{2}+c$		
	$=\frac{1}{2}e^{2x}-e^x+\ln(1+e^x)+k$ AG	$\frac{\frac{1}{2}e^{2x} - e^x + \ln(1 + e^x) + k}{\text{must use a} + c \text{ and "} -\frac{1}{2}\text{" combined}.}$	A1 cso
			(1

Question Number	Scheme		Mark	(S
(a)(i)	$\sin 3\theta = \sin(2\theta + \theta)$ $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$			
	$= 2\sin\theta\cos\theta \cdot \cos\theta + (1 - 2\sin^2\theta)\sin\theta$		M1 A1	
	$= 2\sin\theta \left(1 - \sin^2\theta\right) + \sin\theta - 2\sin^3\theta$		M1	
	$= 3\sin\theta - 4\sin^3\theta$	cso	A1	(4)
(ii)	$8\sin^3\theta - 6\sin\theta + 1 = 0$ $-2\sin 3\theta + 1 = 0$		M1 A1	
	$\sin 3\theta = \frac{1}{2}$ $3\theta = \frac{\pi}{6}, \frac{5\pi}{6}$		M1	
	$\theta = \frac{\pi}{18}, \frac{5\pi}{18}$		A1 A1	(5)
(b)	$\sin 15^{\circ} = \sin (60^{\circ} - 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ}$		M1	
	$=\frac{\sqrt{3}}{2}\times\frac{1}{\sqrt{2}}-\frac{1}{2}\times\frac{1}{\sqrt{2}}$		M1 A1	
	$= \frac{1}{4}\sqrt{6} - \frac{1}{4}\sqrt{2} = \frac{1}{4}(\sqrt{6} - \sqrt{2}) $	cso	A1	(4) [13]
	Alternatives to (b)		M1	
	$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$		M1 A1	
	$= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} = \frac{1}{4} (\sqrt{6} - \sqrt{2}) $	cso	A1	(4)
	② Using $\cos 2\theta = 1 - 2\sin^2 \theta$, $\cos 30^\circ = 1 - 2\sin^2 15^\circ$ $2\sin^2 15^\circ = 1 - \cos 30^\circ = 1 - \frac{\sqrt{3}}{2}$			
	$\sin^2 15^\circ = \frac{2 - \sqrt{3}}{4}$		M1 A1	
	$\left(\frac{1}{4}(\sqrt{6}-\sqrt{2})\right)^2 = \frac{1}{16}(6+2-2\sqrt{12}) = \frac{2-\sqrt{3}}{4}$		M1	
	Hence $\sin 15^\circ = \frac{1}{4} (\sqrt{6} - \sqrt{2})$	cso	A1	(4)

Question Number	Scheme		Mar	ks
(a)	$R^2 = 3^2 + 4^2$		M1	
10000	R=5		A1	
	$\tan \alpha = \frac{4}{3}$		M1	
	α = 53 °	awrt 53°	A1	(4)
(b)	Maximum value is 5	ft their R	B1 ft	
	At the maximum, $\cos(\theta - \alpha) = 1$ or $\theta - \alpha = 0$		M1	
	$\theta = \alpha = 53 \dots ^{\circ}$	ft their α	A1 ft	(3)
(c)	$f(t) = 10 + 5\cos(15t - \alpha)^{\circ}$			
	Minimum occurs when $\cos(15t - \alpha)^{\circ} = -1$		M1	
	The minimum temperature is $(10-5)^{\circ} = 5^{\circ}$		A1 ft	(2)
(d)	$15t - \alpha = 180$		M1	
	t = 15.5	awrt 15.5	M1 A1	(3) [12]