Name:

Pure

Mathematics 2

Advanced Level

Practice Paper J9

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

$$
f(x)=3 \sqrt{ } x+\frac{18}{\sqrt{x}}-20
$$

(a) Show that the equation $f(x)=0$ has a root α in the interval [1.1,1.2].
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
(Total 9 marks)

Question 2

$$
\mathrm{f}(x)=\frac{27 x^{2}+32 x+16}{(3 x+2)^{2}(1-x)}, \quad|x|<\frac{2}{3}
$$

Given that $\mathrm{f}(x)$ can be expressed in the form

$$
\mathrm{f}(x)=\frac{A}{(3 x+2)}+\frac{B}{(3 x+2)^{2}}+\frac{C}{(1-x)}
$$

(a) find the values of B and C and show that $A=0$.
(b) Hence, or otherwise, find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the term in x^{2}. Simplify each term.
(c) Find the percentage error made in using the series expansion in part (b) to estimate the value of f (0.2). Give your answer to 2 significant figures.

Question 3

Figure 3

The curve C shown in Figure 3 has parametric equations

$$
x=t^{3}-8 t, y=t^{2}
$$

where t is a parameter. Given that the point A has parameter $t=-1$,
(a) find the coordinates of A.

The line I is the tangent to C at A.
(b) Show that an equation for 1 is $2 x-5 y-9=0$.

The line I also intersects the curve at the point B.
(c) Find the coordinates of B.

Question 4

(a) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $x=2$ on the curve with equation

$$
\begin{equation*}
y=x^{2} \sqrt{ }(5 x-1) . \tag{6}
\end{equation*}
$$

(b) Differentiate $\frac{\sin 2 x}{x^{2}}$ with respect to x.

Question 5

Find the equation of the tangent to the curve $x=\cos (2 y+\pi)$ at $\left(0, \frac{\pi}{4}\right)$.
Give your answer in the form $y=a x+b$, where a and b are constants to be found.

Question 6

Figure 2

A container is made in the shape of a hollow inverted right circular cone. The height of the container is 24 cm and the radius is 16 cm , as shown in Figure 2. Water is flowing into the container. When the height of water is $h \mathrm{~cm}$, the surface of the water has radius $r \mathrm{~cm}$ and the volume of water is $V \mathrm{~cm}^{3}$.
(a) Show that $V=\frac{4 \pi h^{3}}{27}$.
[The volume V of a right circular cone with vertical height h and base radius r is given by the formula $V=$ $\frac{1}{3} \pi r^{2} h$.]
Water flows into the container at a rate of $8 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(b) Find, in terms of π, the rate of change of h when $h=12$.

Question 7

Figure 1
Figure 1 shows part of the curve $y=\frac{3}{\sqrt{(1+4 x)}}$. The region R is bounded by the curve, the x-axis, and the lines $x=0$ and $x=2$, as shown shaded in Figure 1 .
(a) Use integration to find the area of R.

Question 8

(a) Find $\int \tan ^{2} x \mathrm{~d} x$.
(b) Use integration by parts to find $\int \ln x \mathrm{~d} x$.
(c) Use the substitution $u=1+\mathrm{e}^{x}$ to show that

$$
\int \frac{e^{3 x}}{1+e^{x}} \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x}-\mathrm{e}^{\mathrm{x}}+\ln \left(1+\mathrm{e}^{\mathrm{x}}\right)+k
$$

where k is a constant.

Question 9

(a) (i) By writing $3 \theta=(2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta . \tag{4}
\end{equation*}
$$

(ii) Hence, or otherwise, for $0<\theta<\frac{\pi}{3}$, solve

$$
8 \sin ^{3} \theta-6 \sin \theta+1=0
$$

(i) Give your answers in terms of π.
(b) Using $\sin (\theta-\alpha)=\sin \theta \cos \alpha-\cos \theta \sin \alpha$, or otherwise, show that

$$
\begin{equation*}
\sin 15^{\circ}=\frac{1}{4}(\sqrt{ } 6-\sqrt{ } 2) \tag{4}
\end{equation*}
$$

Question 10

(a) Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<$ 90°.
(b) Hence find the maximum value of $3 \cos \theta+4 \sin \theta$ and the smallest positive value of θ for which this maximum occurs.

The temperature, $\mathrm{f}(t)$, of a warehouse is modelled using the equation

$$
f(t)=10+3 \cos (15 t)^{\circ}+4 \sin (15 t)^{\circ}
$$

where t is the time in hours from midday and $0 \leqslant t<24$.
(c) Calculate the minimum temperature of the warehouse as given by this model.
(d) Find the value of t when this minimum temperature occurs.

