

Pure Mathematics 2 Practice Paper M10 MARK SCHEME

Question Number	Scheme	Marks	
	(a) $25\ 000 \times 1.03 = 25750$ $\left\{ 25000 + 750 = 25750, \text{ or } 25000 \frac{(1 - 0.03^2)}{1 - 0.03} = 25750 \right\}$ (*)	B1	(1
	(b) $r = 1.03$ Allow $\frac{103}{100}$ or $1\frac{3}{100}$ but no other alternatives	B1	(1
	(c) $25000r^{N-1} > 40000$ (Either letter r or their r value) Allow '= ' or '<' $r^M > 1.6 \Rightarrow \log r^M > \log 1.6$ Allow '= ' or '<' (See below)	M1	
	OR (by change of base), $\log_{1.03} 1.6 < M \implies \frac{\log 1.6}{\log 1.03} < M$	M1	
	(N-1)log1.03 > log1.6 (Correct bracketing required) (*) Accept work for part (c) seen in part (d)	A1 cso	(3
	(d) Attempt to evaluate $\frac{\log 1.6}{\log 1.03} + 1$ {or $25000(1.03)^{15}$ and $25000(1.03)^{16}$ }	M1	
	$N = 17$ (not 16.9 and not e.g. $N \ge 17$) Allow '17 th year' Accept work for part (d) seen in part (c)	A1	(2
	(e) Using formula $\frac{a(1-r^n)}{1-r}$ with values of a and r, and $n = 9, 10 \text{ or } 11$	M1	
	$\frac{25000(1-1.03^{10})}{1-1.03}$	A1	
	287 000 (<u>must</u> be rounded to the nearest 1 000) Allow 287000.00	A1	(3 1(
With, so Jumpin score of (The in Longer log(25) (d) Correct Evaluat (e) M1 can (Allow 1 st A1 i To the n	Requires $\frac{40000}{25000}$ to be dealt with, and 'two' logs introduced. ay, N instead of $N-1$, this mark is still available. g straight from $1.03^{N-1} > 1.6$ to $(N-1)\log 1.03 > \log 1.6$ can only M1 M0 A0. Intermediate step $\log 1.03^{N-1} > \log 1.6$ must be seen). <u>methods</u> require correct log work throughout for 2^{nd} M, e.g.: $000r^{N-1} > \log 40000 \Rightarrow \log 25000 + \log r^{N-1} > \log 40000 \Rightarrow$ $\log r^{N-1} > \log 40000 - \log 25000 \Rightarrow \log r^{N-1} > \log 1.6$ answer with no working scores both marks. ting $\log\left(\frac{1.6}{1.03}\right) + 1$ does <u>not</u> score the M mark. also be scored by a "year by year" method, <u>with terms added</u> . w the M mark if there is evidence of adding 9, 10 or 11 terms). s scored if the 10 correct terms have been added (allow terms to be to the near nearest 100, these terms are: 25800, 26500, 27300, 28100, 29000, 29900, 30700, 31700, 32600	rest 100).	
No worki	ing shown: Special case: 287 000 scores 1 mark, scored on ePEN as 1, 0, 0. Iswers with no working score no marks).		

Question Number	Scheme	Mark	S
	(a) $A = 2$ $2x^2 + 5x - 10 = A(x-1)(x+2) + B(x+2) + C(x-1)$		
	$\begin{array}{ll} x \to 1 & -3 = 3B \implies B = -1 \\ x \to -2 & -12 = -3C \implies C = 4 \end{array}$	M1 A1 A1	(3)
	(b) $\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = 2 + (1-x)^{-1} + 2\left(1 + \frac{x}{2}\right)^{-1}$	М1	
	$(1-x)^{-1} = 1 + x + x^2 + \dots$	B1	
	$\left(1+\frac{x}{2}\right)^{-1} = 1 - \frac{x}{2} + \frac{x^2}{4} + \dots$	B1	
	$\frac{2x^2 + 5x - 10}{(x-1)(x+2)} = (2+1+2) + (1-1)x + \left(1 + \frac{1}{2}\right)x^2 + \dots$	M1	
	$= 5 + \dots \qquad \text{ft their } A - B + \frac{1}{2}C$	A1 ft	
	$= \dots + \frac{3}{2}x^2 + \dots$ 0x stated or implied	AI AI	(6)
			(9)

Question Number	Scheme	Mar	ks
	At <i>P</i> , $y = 3$	DI	
	$\frac{dy}{dx} = \frac{3(-2)(5-3x)^{-3}(-3)}{(5-3x)^{-3}} \left\{ \text{or } \frac{18}{(5-3x)^{-3}} \right\}$	M1 <u>A1</u>	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{18}{(5-3(2))^3} \left\{ = -18 \right\}$	M1	
	$m(N) = \frac{-1}{-18} \text{ or } \frac{1}{18}$	M1	
	N: $y-3 = \frac{1}{18}(x-2)$	M1	
	N: $x - 18y + 52 = 0$	A1	(6)
			۱,
	1 st M1: $\pm k (5-3x)^{-3}$ can be implied. See appendix for application of the quotient rule.		
	2^{nd} M1: Substituting $x = 2$ into an equation involving their $\frac{dy}{dx}$;		
	3^{rd} M1: Uses m(N) = $-\frac{1}{\text{their m(T)}}$.		
	4 th M1: $y - y_1 = m(x - 2)$ with 'their NORMAL gradient' or a "changed" tangent		
	gradient and their y_1 . Or uses a complete method to express the equation of the tangent in the form $y = mx + c$ with 'their NORMAL ("changed" numerical) gradient', their		
	y_1 and $x = 2$.		
	Note: To gain the final A1 mark all the previous 6 marks in this question need to be earned. Also there must be a completely correct solution given.		

Question Number	Scheme	Marks
	$\frac{d}{dx}(2^x) = \ln 2.2^x$ $\ln 2.2^x + 2y\frac{dy}{dx} = 2y + 2x\frac{dy}{dx}$	B1
	$\ln 2.2^{x} + 2y \frac{dy}{dx} = 2y + 2x \frac{dy}{dx}$ Substituting (3, 2)	M1 A1= A1
	$8\ln 2 + 4\frac{dy}{dx} = 4 + 6\frac{dy}{dx}$	M1
	$\frac{dy}{dx} = 4\ln 2 - 2$ Accept exact equivalents	A1
		(6)

Question Number	Scheme	Marks	5
(a)	Either $y = 2 \operatorname{or}(0, 2)$	B1	
			(1
(b)	When $x = 2$, $y = (8 - 10 + 2)e^{-2} = 0e^{-2} = 0$	B1	
	$(2x^2 - 5x + 2) = 0 \implies (x - 2)(2x - 1) = 0$	M1	
	Either $x = 2$ (for possibly B1 above) or $x = \frac{1}{2}$.	A1	
			(:
(c)	$\frac{dy}{dx} = (4x-5)e^{-x} - (2x^2 - 5x + 2)e^{-x}$	M1A1A1	
			(
(b)	$(4x-5)e^{-x} - (2x^2 - 5x + 2)e^{-x} = 0$	M1	
	$2x^{2} - 9x + 7 = 0 \implies (2x - 7)(x - 1) = 0$	M1	
	$x = \frac{7}{2}, 1$	A1	
	When $x = \frac{7}{2}$, $y = 9e^{\frac{7}{2}}$, when $x = 1$, $y = -e^{-1}$	ddM1A1	
			[1
	(b) If the candidate believes that $e^{-x} = 0$ solves to $x = 0$ or gives an extra solution		
	of $x = 0$, then withhold the final accuracy mark.		
	(c) M1: (their u') $e^{-x} + (2x^2 - 5x + 2)$ (their v')		
	A1: Any one term correct.		
	A1: Both terms correct.		
	(d) 1^{st} M1: For setting their $\frac{dv}{dr}$ found in part (c) equal to 0.		
	2^{nd} M1: Factorise or eliminate out e^{-x} correctly and an attempt to factorise a 3-term quadratic or apply the formula to candidate's $ax^2 + bx + c$.		
	See rules for solving a three term quadratic equation on page 1 of this Appendix. 3^{rd} ddM1: An attempt to use at least one x-coordinate on $y = (2x^2 - 5x + 2)e^{-x}$.		
	Note that this method mark is dependent on the award of the two previous method marks in this part.		
	Some candidates write down corresponding <i>y</i> -coordinates without any working. It may be necessary on some occasions to use your calculator to check that at least one of the two		
	y-coordinates found is correct to awrt 2 sf.		
	Final A1: Both $\{x = 1\}, y = -e^{-1}$ and $\{x = \frac{7}{2}\}, y = 9e^{-\frac{7}{2}}$. cao		
	Note that both exact values of y are required.		

Question Number		Scheme		Mark	S
	= 4	$\frac{\cos^2 \theta - 3\sin^2 \theta}{\left(\frac{1}{2} + \frac{1}{2}\cos 2\theta\right) - 3\left(\frac{1}{2} - \frac{1}{2}\cos 2\theta\right)}$ $+ \frac{7}{2}\cos 2\theta \bigstar$	cso	M1 M1 A1	(3)
	(b) $\int \theta \cos 2\theta d\theta$	$\theta = \frac{1}{2}\theta \sin 2\theta - \frac{1}{2}\int \sin 2\theta d\theta$ $= \frac{1}{2}\theta \sin 2\theta + \frac{1}{4}\cos 2\theta$		M1 A1 A1	
		$\theta = \frac{1}{4}\theta^2 + \frac{7}{4}\theta\sin 2\theta + \frac{7}{8}\cos 2\theta$ $\frac{7}{2} = \left[\frac{\pi^2}{16} + 0 - \frac{7}{8}\right] - \left[0 + 0 + \frac{7}{8}\right]$		M1 A1 M1	
		$=\frac{\pi^2}{16} - \frac{7}{4}$		A1	(7) [10]

Question Number	Scheme	Marks	
(a)	$\frac{2\sin\theta\cos\theta}{1+2\cos^2\theta-1}$	м1	
	$\frac{2 \sin \theta \cos \theta}{2 \cos \theta \cos \theta} = \tan \theta \text{ (as required) AG}$	A1 cso	(2)
(b)	$2 \tan \theta = 1 \implies \tan \theta = \frac{1}{2}$	M1	(-)
	$\theta_1 = \text{awrt } 26.6^\circ$	A1	
	$\theta_2 = \text{awrt} - 153.4^*$	A1√	(3) [5]
	(a) M1: Uses both a correct identity for $\sin 2\theta$ and a correct identity for $\cos 2\theta$. Also allow a candidate writing $1 + \cos 2\theta = 2\cos^2 \theta$ on the denominator. Also note that angles must be consistent in when candidates apply these identities. A1: Correct proof. No errors seen.		
	(b) 1^{st} M1 for either $2 \tan \theta = 1$ or $\tan \theta = \frac{1}{2}$, seen or implied.		
	A1: awrt 26.6 A1 $$: awrt -153.4° or $\theta_2 = -180^\circ + \theta_1$		
	Special Case : For candidate solving, $\tan \theta = k$, where $k \neq \frac{1}{2}$, to give θ_1 and $\theta_2 = 180^{\circ} + \theta_1$ does not does a set (b).		
	$\theta_2 = -180^\circ + \theta_1$, then award M0A0B1 in part (b). Special Case: Note that those candidates who writes $\tan \theta = 1$, and gives ONLY two answers of 45° and -135° that are inside the range will be awarded SC M0A0B1.		

Question Number	Scheme		Mark	S
	$\frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$ $\int \sin x \mathrm{e}^{\cos x + 1} \mathrm{d}x = -\int \mathrm{e}^{u} \mathrm{d}u$		B1 M1 A1	
	$= -e^{u}$ $= -e^{\cos x+1}$	ft sign error	Alft	
	$\begin{bmatrix} -e^{\cos x+1} \end{bmatrix}_0^{\frac{\pi}{2}} = -e^1 - (-e^2)$ $= e(e-1) *$	or equivalent with u	M1	
	= e(e-1) *	cso	A1	(6) [6]

rks	Mark		Scheme	Question Number
	B1 B1		$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\sin t \cos t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 2\sec^2 t$	
(4)	M1 A1	or equivalent	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sec^2 t}{\sin t \cos t} \left(= \frac{1}{\sin t \cos^3 t} \right)$	
	B1	1	At $t = \frac{\pi}{3}$, $x = \frac{3}{4}$, $y = 2\sqrt{3}$	
	M1 A1	1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sec^2 \frac{\pi}{3}}{\sin \frac{\pi}{3} \cos \frac{\pi}{3}} = \frac{16}{\sqrt{3}}$	
	M1	1	$y - 2\sqrt{3} = \frac{16}{\sqrt{3}} \left(x - \frac{3}{4} \right)$	
(6 [10]	M1 A1	1	$y=0 \implies x=\frac{3}{8}$	

Question Number	Scheme	Marks
	(a) $\frac{\mathrm{d}V}{\mathrm{d}t} = 0.48\pi - 0.6\pi h$	M1 A1
	$V = 9\pi h \implies \frac{\mathrm{d}V}{\mathrm{d}t} = 9\pi \frac{\mathrm{d}h}{\mathrm{d}t}$	B1
	$9\pi \frac{\mathrm{d}h}{\mathrm{d}t} = 0.48\pi - 0.6\pi h$	M1
	Leading to $75\frac{dh}{dt} = 4 - 5h$ * cso	A1 (5)
	(b) $\int \frac{75}{4-5h} dh = \int 1 dt$ separating variables	M1
	$-15\ln(4-5h) = t(+C)$	M1 A1
	$-15\ln(4-5h) = t + C$ When $t = 0$, $h = 0.2$ $-15\ln 3 = C$ $t = 15\ln 3 - 15\ln(4-5h)$ When $h = 0.5$ $t = 15\ln 3 - 15\ln 1.5 = 15\ln\left(\frac{3}{1.5}\right) = 15\ln 2$ awrt 10.4	M1 M1 A1
	Alternative for last 3 marks $t = [-15 \ln (4-5h)]_{02}^{0.5}$ $= -15 \ln 1.5 + 15 \ln 3$ $= 15 \ln (\frac{3}{1.5}) = 15 \ln 2$ awrt 10.4	M1 M1 A1 (6)

Question Number	Scheme	Marks
(a)	$R = \sqrt{6.25}$ or 2.5	B1
	$\tan \alpha = \frac{1.5}{2} = \frac{3}{4} \implies \alpha = \text{awrt } 0.6435$	M1A1
(b) (i)	Max Value = 2.5	(3
(b) (i) (ii)	$\sin(\theta - 0.6435) = 1$ or $\theta - \text{their } \alpha = \frac{\pi}{2}; \implies \theta = \text{awrt } 2.21$	B1√
(11)	$\frac{\sin(v-v,v+3,5)-1}{v} = 0$	<u>M1;</u> A1 √ (3
(c)	$H_{\rm Max} = 8.5 \ ({\rm m})$	B1√
	$\sin\left(\frac{4\pi t}{25} - 0.6435\right) = 1 \text{ or } \frac{4\pi t}{25} = \text{ their (b) answer } \Rightarrow t = \text{ awrt } 4.41$	M1;A1
		(
(d)	$\Rightarrow 6 + 2.5 \sin\left(\frac{4\pi t}{25} - 0.6435\right) = 7; \Rightarrow \sin\left(\frac{4\pi t}{25} - 0.6435\right) = \frac{1}{2.5} = 0.4$	M1;M1
	$\left\{\frac{4\pi t}{25} - 0.6435\right\} = \sin^{-1}(0.4) \text{ or awrt } 0.41$	A1
	Either $t = awrt 2.1$ or awrt 6.7	A1
	So, $\left\{\frac{4\pi t}{25} - 0.6435\right\} = \left\{\pi - 0.411517 \text{ or } 2.730076^{c}\right\}$	ddM1
	Times = $\{14:06, 18:43\}$	A1 (
	(a) B1: $R = 2.5$ or $R = \sqrt{6.25}$. For $R = \pm 2.5$, award B0.	[1
	(a) B1. $R = 2.5$ or $R = \sqrt{0.25}$. For $R = \pm 2.5$, award B0. M1: $\tan \alpha = \pm \frac{15}{2}$ or $\tan \alpha = \pm \frac{2}{15}$	
	A1: $\alpha = awrt 0.6435$	
	(b) B1 $$: 2.5 or follow through the value of R in part (a).	
	M1: For $\sin(\theta - \text{their } \alpha) = 1$	
	A1 $$: awrt 2.21 or $\frac{\pi}{2}$ + their α rounding correctly to 3 sf.	
	(c) B1 $$: 8.5 or 6 + their <i>R</i> found in part (a) as long as the answer is greater than	
	$6. \qquad (4\pi t) \qquad 4\pi t$	
	M1: $\sin\left(\frac{4\pi t}{25} \pm \text{their } \alpha\right) = 1 \text{ or } \frac{4\pi t}{25} = \text{their (b) answer}$	
	A1: For sin ⁻¹ (0.4) This can be implied by awrt 4.41 or awrt 4.40.	
	(d) M1: $6 + (\text{their } R) \sin\left(\frac{4\pi t}{25} \pm \text{their } \alpha\right) = 7$, M1:	
	$\sin\left(\frac{4\pi t}{25} \pm \text{their } \alpha\right) = \frac{1}{\text{their } R}$	
	A1: For sin ⁻¹ (0.4). This can be implied by awrt 0.41 or awrt 2.73 or other values for	
	different α 's. Note this mark can be implied by seeing 1.055.	
	A1: Either $t = awrt 2.1$ or $t = awrt 6.7$	
	ddM1: either π – their PV ^c . Note that this mark is dependent upon the two M marks. This mark will usually be awarded for seeing either 2.730 or 3.373	
	A1: Both $t = 14:06$ and $t = 18:43$ or both 126 (min) and 403 (min) or both 2 hr 6	
	min and 6 hr 43 min.	