Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M10

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

The adult population of a town is 25000 at the end of Year 1.
A model predicts that the adult population of the town will increase by 3% each year, forming a geometric sequence.
(a) Show that the predicted adult population at the end of Year 2 is 25750.
(b) Write down the common ratio of the geometric sequence.

The model predicts that Year N will be the first year in which the adult population of the town exceeds 40 000.
(c) Show that

$$
(N-1) \log 1.03>\log 1.6
$$

(d) Find the value of N.

At the end of each year, each member of the adult population of the town will give $£ 1$ to a charity fund.
Assuming the population model,
(e) find the total amount that will be given to the charity fund for the 10 years from the end of Year 1 to the end of Year 10, giving your answer to the nearest $£ 1000$.

Question 2

$$
\frac{2 x^{2}+5 x-10}{(x-1)(x+2)} \equiv A+\frac{B}{x-1}+\frac{C}{x+2}
$$

(a) Find the values of the constants A, B and C.

$$
\frac{2 x^{2}+5 x-10}{(x-1)(x+2)}
$$

in ascending powers of x, as far as the term in x^{2}.

Question 3

A curve C has equation

$$
y=\frac{3}{(5-3 x)^{2}}, \quad x \neq \frac{5}{3}
$$

The point P on C has x-coordinate 2. Find an equation of the normal to C at P in the form $a x+b y+c=0$, where a, b and c are integers.

Question 4

A curve C has equation

$$
2^{x}+y^{2}=2 x y
$$

Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C with coordinates $(3,2)$.

Question 5

Figure 1
Figure 1 shows a sketch of the curve C with the equation $y=\left(2 x^{2}-5 x+2\right) \mathrm{e}^{-x}$.
(a) Find the coordinates of the point where C crosses the y-axis.
(b) Show that C crosses the x-axis at $x=2$ and find the x-coordinate of the other point where C crosses the x-axis.
(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(d) Hence find the exact coordinates of the turning points of C.

Question 6

$$
f(\theta)=4 \cos ^{2} \theta-3 \sin ^{2} \theta
$$

(a) Show that

$$
\mathrm{f}(\theta)=\frac{1}{2}+\frac{7}{2} \cos 2 \theta
$$

(b) Hence, using calculus, find the exact value of

Question 7

(a) Show that

$$
\frac{\sin 2 \theta}{1+\cos 2 \theta}=\tan \theta
$$

(b) Hence find, for $-180^{\circ} \leq \theta<180^{\circ}$, all the solutions of

$$
\frac{2 \sin 2 \theta}{1+\cos 2 \theta}=1
$$

Give your answers to 1 decimal place.

Question 8

Using the substitution $u=\cos x+1$, or otherwise, show that

$$
\int_{0}^{\frac{\pi}{2}} \mathrm{e}^{\cos x+1} \sin x d x=e(e-1)
$$

Question 9

A curve C has parametric equations

$$
x=\sin ^{2} t, \quad y=2 \tan t, \quad 0 \leqslant t<\frac{\pi}{2}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The tangent to C at the point where $t=\frac{\pi}{3}$ cuts the x-axis at the point P.
(b) Find the x-coordinate of P.
\qquad .

Question 10

Figure 2
Figure 2 shows a cylindrical water tank. The diameter of a circular cross-section of the tank is 6 m . Water is flowing into the tank at a constant rate of $0.48 \pi \mathrm{~m}^{3} \mathrm{~min}^{-1}$. At time t minutes, the depth of the water in the tank is h metres. There is a tap at a point T at the bottom of the tank. When the tap is open, water leaves the tank at a rate of $0.6 \pi h \mathrm{~m}^{3} \mathrm{~min}^{-1}$.
(a) Show that t minutes after the tap has been opened

$$
\begin{equation*}
75 \frac{\mathrm{~d} h}{\mathrm{~d} t}=(4-5 h) \tag{5}
\end{equation*}
$$

When $t=0, h=0.2$
(b) Find the value of t when $h=0.5$

Question 11

Express $2 \sin \theta-1.5 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(a) Give the value of α to 4 decimal places.
(b) (i) Find the maximum value of $2 \sin \theta-1.5 \cos \theta$.
(ii) Find the value of θ, for $0 \leq \theta<\pi$, at which this maximum occurs.

Tom models the height of sea water, H metres, on a particular day by the equation

$$
H=6+2 \sin \left(\frac{4 \pi t}{25}\right)-1.5 \cos \left(\frac{4 \pi t}{25}\right), \quad 0 \leqslant t<12
$$

where t hours is the number of hours after midday.
(c) Calculate the maximum value of H predicted by this model and the value of t, to 2 decimal places, when this maximum occurs.
(d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres.

