Pure Mathematics 2 Practice Paper M11 MARK SCHEME

Question 1

Question Number	Scheme	Marks
	Assume the opposite is true that $\sqrt{3}$ can be expressed in the form $\frac{a}{b^{\prime}}$ where a and b are integers with no common factor except 1 $\sqrt{3}=\frac{a}{b}$ $3=\frac{a^{2}}{b^{2}}$ $a^{2}=3 b^{2}$ therefore a^{2} must be a multiple of 3. Therefore a must be a multiple of 3 a can be expressed as $3 n$ since it is a multiple of 3 $3 b^{2}=(3 n)^{2}$ $3 b^{2}=9 n^{2}$ $b^{2}=3 n^{2}$ Therefore b^{2} must be a multiple of 3. Therefore b must be a multiple of 3 This contradicts our assumption since a and b both have common factor 3. Therefore $\sqrt{3}$ is irrational	

Question 2

Question Number	Scheme	Marks
(a)	$\begin{array}{lc}\frac{1}{2} r^{2} \theta=\frac{1}{2}(6)^{2}\left(\frac{\pi}{3}\right)=6 \pi \text { or } 18.85 \text { or awrt } 18.8(\mathrm{~cm})^{2} & \text { Using } \frac{1}{2} r^{2} \theta \text { (See notes) } \\ & 6 \pi \text { or } 18.85 \text { or awrt } 18.8\end{array}$	M1 A1
(b)	$\sin \left(\frac{\pi}{6}\right)=\frac{r}{6-r}$ $\sin \left(\frac{\pi}{6}\right)$ or $\sin 30^{\circ}=\frac{r}{6-r}$ $\frac{1}{2}=\frac{r}{6-r}$ Replaces \sin by numeric value $6-r=2 r \Rightarrow r=2$ $r=2$	M1 dM1
(c)	$\begin{array}{lr}\text { Area }=6 \pi-\pi(2)^{2}=2 \pi \text { or awrt } 6.3(\mathrm{~cm})^{2} & \text { their area of sector }-\pi r^{2} \\ 2 \pi \text { or awrt } 6.3\end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 cao } \end{aligned}$
(a)	M1: Needs θ in radians for this formula. Candidate could convert to degrees and use the degrees formula. A1: Does not need units. Answer should be either 6π or 18.85 or awrt 18.8 Correct answer with no working is M1A1. This M1A1 can only be awarded in part (a).	
(b)	M1: Also allow $\cos \left(\frac{\pi}{3}\right)$ or $\cos 60^{\circ}=\frac{r}{6-r}$.	
	1^{*} M1: Needs correct trigonometry method. Candidates could state $\sin \left(\frac{\pi}{6}\right)=\frac{r}{x}$ and $x+r=$ equivalent in their working to gain this method mark. dM1: Replaces sin by numerical value. $0.009 \ldots=\frac{r}{6-r}$ from working "incorrectly" in degre here for dM1. A1: For $r=2$ from correct solution only. Alternative: $1^{\text {th }} \mathrm{M} 1$ for $\frac{r}{\circ C}=\sin 30$ or $\frac{r}{\circ C}=\cos 60.2^{\text {nd }} \mathrm{M} 1$ for $O C=2 r$ and then A 1 for $r=$ Note seeing $O C=2 r$ is M1M1. Special Case: If a candidate states an answer of $r=2$ (must be in part (b)) as a guess or from incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A (c).	es is fine 2. an 1 in part
(c)	M1: For "their area of sector - their area of circle", where $r>0$ is ft from their answer to part Allow the method mark if "their area of sector" < "their area of circle". The candidate must sh somewhere in their working that they are subtracting the correct way round, even if their answ negative. Some candidates in part (c) will either use their value of r from part (b) or even introduce a value in part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these candi Note: Candidates can get M1 by writing "their part (a) answer $-\pi r^{2 n}$, where the radius of the not substituted. A1: cao - accept exact answer or awrt 6.3 Correct answer only with no working in (c) gets M1A1 Beware: The answer in (c) is the same as the arc length of the pendant	(b) how er is lue of r didates. e circle is

Question 3

Question Number	Scheme	Marks
(a)	$\begin{aligned} & \left\{a r=192 \text { and } a r^{2}=144\right\} \\ & r=\frac{144}{192} \\ & r=\frac{3}{4} \text { or } 0.75 \end{aligned}$	M1 A1 [2]
(b)	$\begin{aligned} & a(0.75)=192 \\ & a\left\{=\frac{192}{0.75}\right\}=256 \end{aligned}$	M1 A1 [2]
(c)	$\mathrm{S}_{\infty}=\frac{256}{1-0.75} \quad$ Applies $\frac{a}{1-r}$ correctly using both their a and their $\|r\|<1$. So, $\left\{\mathrm{S}_{\infty}=\right\} 1024$ 1024	M1 Al cao [2]
(d)	$\begin{aligned} & \frac{256\left(1-(0.75)^{n}\right)}{1-0.75}>1000 \\ & (0.75)^{n}<1-\frac{1000(0.25)}{256}\left\{=\frac{6}{256}\right\} \\ & n \log (0.75)<\log \left(\frac{6}{256}\right) \\ & \begin{array}{r} \text { Applies } \mathrm{S}_{n} \text { with their } a \text { and } r \text { and "uses" } 1000 \\ \text { at any point in their working. (Allow with }=\text { or }< \end{array} \\ & n>\frac{\log \left(\frac{6}{256}\right)}{\log (0.75)}=13.0471042 \ldots \Rightarrow n=14 \\ & \text { Attempt to isolate }+(r)^{n} \text { from } \mathrm{S}_{n} \text { formula. } \\ & \text { (Allow with }=\text { or }>\text {). } \\ & \text { Uses the power law of logarithms correctly. } \\ & \text { (Allow with }=\text { or }>\text {). (See notes.) } \end{aligned}$	M1 M1 M1 Al cso

(a) $\quad \mid$ M1: for eliminating a by eg. $192 r=144$ or by either dividing $a r^{2}=144$ by $a r=192$ or dividing $a r=192$ by $a r^{2}=144$, to achieve an equation in r or $\frac{1}{r}$ Note that $r^{2}-r=\frac{144}{192}$ is M0. Note also that any of $r=\frac{144}{192}$ or $r=\frac{192}{144}\left\{=\frac{4}{3}\right\}$ or $\frac{1}{r}=\frac{192}{144}$ or $\frac{1}{r}=\frac{144}{192}$ are fine for the award of M1. Note: A candidate just writing $r=\frac{144}{192}$ with no reference to a can also get the method mark. Note: $a r^{2}=192$ and $a r^{3}=144$ leading to $r=\frac{3}{4}$ scores M1A1. This is because r is the ratio
(b) between any two consecutive terms. These candidates, however, will usually be penalised in part (b). M1 for inserting their r into either of the correct equations of either $a r=192$ or $\{a=\} \frac{192}{r}$ or $a r^{2}=144$ or $\{a=\} \frac{144}{r^{2}}$. No slips allowed here for M1.
M1: can also be awarded for writing down $144=a\left(\frac{192}{a}\right)^{2}$
A1 for $a=256$ only. Note 256 from any working scores M1A1.
Note: Some candidates incorrectly confuse notation to give $r=\frac{4}{3}$ or 1.33 in part (a) (getting M1A0). In part (b), they recover to write $a=192 \times \frac{4}{3}$ for M1 and then 256 for A1.

Question 4

(b)

$$
\begin{array}{c|c}
f(x)=\frac{5}{2 x^{2}+7 x+3} \\
f^{\prime}(x)=\frac{-5(4 x+7)}{\left(2 x^{2}+7 x+3\right)^{2}} & \text { M1M1A1 } \\
f^{\prime}(-1)=-\frac{15}{4} & \text { M1A1 } \\
\frac{y-\left(-\frac{5}{2}\right)}{(x--1)}=\text { their } \frac{4}{15} \\
y+\frac{5}{2}=\frac{4}{15}(x+1) \text { or any equivalent form } m_{1} m_{2}=-1 \text { to give gradient of normal }=\frac{4}{15} & \text { M1 } \\
\text { A1 }
\end{array}
$$

Question 5

Question 6

Question Number	Scheme		Marks	
	(a) $\quad \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{1}{2} \pi h-\pi h^{2}$	or equivalent	M1 A1	
	$\text { At } h=0.1, \frac{\mathrm{~d} V}{\mathrm{~d} h}=\frac{1}{2} \pi(0.1)-\pi(0.1)^{2}=0.04 \pi$	$\frac{\pi}{25}$	M1 A1	(4)
	(b) $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{\pi}{800} \times \frac{1}{\frac{1}{2} \pi h-\pi h^{2}}$	or $\frac{\pi}{800} \div$ their (a)	M1	
	$\text { At } h=0.1, \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{\pi}{800} \times \frac{25}{\pi}=\frac{1}{32}$	awrt 0.031	A1	(2)
				[6]

Question 7

Question 8

Question Number	Scheme Marks (a) $\frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}$$=\frac{1-\cos 2 \theta}{\sin 2 \theta}$	M1
	$=\frac{2 \sin ^{2} \theta}{2 \sin \theta \cos \theta}$	M1A1
(b)(i)	$=\frac{\sin \theta}{\cos \theta}=\tan \theta$	cso

(b)(ii)	$\tan 2 x=1$	M1
	$2 x=45^{\circ}$	A1
	$2 x=45^{\circ}+180^{\circ}$	M1
	$x=22.5^{\circ}, 112.5^{\circ}, 202.5^{\circ}, 292.5^{\circ}$	$\begin{aligned} & \text { A1(any two) } \\ & \text { A1 } \end{aligned}$
		(5)
	Alt for (b)(i) $\tan 15^{\circ}=\tan \left(60^{\circ}-45^{\circ}\right)$ or $\tan \left(45^{\circ}-30^{\circ}\right)$	12 Marks
	$\tan 15^{\circ}=\frac{\tan 60-\tan 45}{1+\tan 60 \tan 45} \text { or } \frac{\tan 45-\tan 30}{1+\tan 45 \tan 30}$	M1
	$\tan 15^{\circ}=\frac{\sqrt{3}-1}{1+\sqrt{3}} \text { or } \quad \frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}$	M1
	Rationalises to produce $\tan 15^{\circ}=2-\sqrt{3}$	A1*

Question 9

Question 10

Question 11

