

Pure Mathematics 2 Practice Paper M7 MARK SCHEME

Question Number	Scheme	Marks
1.	'Assume that there exists a product of two odd numbers that is even	B1
	(2m+1)(2n+1) = 4mn + 2m + 2n + 1	N11
	= 2(2mn + m + n) + 1	M1
	2(2mn + m + n) is even so $2(2mn + m + n) + 1$ must be odd	
	This contradicts the assumption that the product of two odd numbers is even, therefore the product of two odd numbers is odd	B1

Question Number	Scheme	Marks
(a) Way 1	A method of long division gives, $\frac{2(4x^2 + 1)}{(2x + 1)(2x - 1)} = 2 + \frac{4}{(2x + 1)(2x - 1)}$ $A = 2$	B1
	$\frac{4}{(2x+1)(2x-1)} \equiv \frac{B}{(2x+1)} + \frac{C}{(2x-1)}$ $4 \equiv B(2x-1) + C(2x+1)$ or their remainder, $Dx + E \equiv B(2x-1) + C(2x+1)$ Forming any one of these two identities. Can be implied.	M1
	Let $x = -\frac{1}{2}$, $4 = -2B \implies B = -2$ Let $x = \frac{1}{2}$, $4 = 2C \implies C = 2$ Let $x = \frac{1}{2}$, $4 = 2C \implies C = 2$ both B and C correct	
Aliter (a) Way 2	$\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv A + \frac{B}{(2x+1)} + \frac{C}{(2x-1)}$ See below for the award of B1 decide to award B1 here!! in for $A = 2$	В1
	$2(4x^{2}+1) \equiv A(2x+1)(2x-1) + B(2x-1) + C(2x+1)$ Forming this identity. Can be implied. Equate x ² , 8 = 4A \Rightarrow A = 2	M1
	Let $x = -\frac{1}{2}$, $4 = -2B \implies B = -2$ Let $x = -\frac{1}{2}$, $4 = -2B \implies B = -2$ See note below either one of $B = -2$ or $C = 2$	
	Let $x = \frac{1}{2}$, $4 = 2C \implies C = 2$ both <i>B</i> and <i>C</i> correct	A1 A1 [4]
	If a candidate states one of either B or C correctly then the method mark M1 can be implied.	

(b)
$$\int \frac{2(4x^{2}+1)}{(2x+1)(2x-1)} dx = \int 2 - \frac{2}{(2x+1)} + \frac{2}{(2x-1)} dx$$

$$= 2x - \frac{2}{2}\ln(2x+1) + \frac{2}{2}\ln(2x-1) (+c)$$
Either $p\ln(2x+1)$ or $q\ln(2x-1)$
or either $p\ln(2x+1)$ or $q\ln(2x-1)$
or $either p\ln(2x+1)$ or $q\ln(2x-1)$
or $either p\ln(2x+1) + \frac{2}{3}\ln(2x-1)$
Al $\cos \delta$ aef
$$= \frac{2}{2}\ln(2x+1) + \frac{2}{3}\ln(2x-1)$$

$$= \frac{2}{1}\ln(2x+1) + \frac{2}{3}\ln(2x-1)$$
See note below.
$$= \frac{2}{1}\ln(2x+1) + \frac{2}{3}\ln(2x-1)$$
Substitutes limits of 2 and 1
and subtracts the correct way
round. (invisible bracket sokay.)
$$= 2 + \ln(\frac{3(3)}{5})$$
Use of correct product
(or power) and/or quotient havs
for logarithmic term for therit
numerical expression.
$$= 2 + \ln(\frac{9}{5})$$
Cor $2 - \ln(\frac{9}{5})$
and k stated as $\frac{1}{5}$.
$$\begin{bmatrix} 10 \text{ marks} \\ 10 \text{ marks} \\ 0 \text{ logarithmic term. Any error
in applying the laws of logarithms
between the denominator of
ther f or C wth (2x+1)) or (2x-1)$$
. Hence:
Either $\frac{1}{2(2x+1)} \rightarrow k\ln(2(2x-1))$ or (2x-1). Hence:
Either $\frac{1}{2(2x+1)} \rightarrow k$

Therman Strain

Question Number	Scheme		Marks
(a)	$x = \tan^2 t$, $y = \sin^2 t$	t	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2(\tan t)\sec^2 t, \frac{\mathrm{d}y}{\mathrm{d}t} = \cos^2 t$	st Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	B1
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos t}{2\tan t \sec^2 t} \left(=\frac{\cos^4}{2\sin t}\right)$	$\frac{t}{t}$ $\frac{\pm \cos t}{their \frac{dx}{dt}}$ $\frac{\pm \cos t}{their \frac{dx}{dt}}$	M1 A1√
(b)	When $t = \frac{\pi}{4}$, $x = 1$, $y = \frac{1}{\sqrt{2}}$ (r	These coordinates can be implied. ($y = \sin(\frac{\pi}{4})$ is not sufficient for B1)	[3] B1, B1
	When $t = \frac{\pi}{4}$, $m(\mathbf{T}) = \frac{dy}{dx} = \frac{dy}{2 \tan x}$	$\frac{\cos \frac{\pi}{4}}{\sin \frac{\pi}{4} \sec^2 \frac{\pi}{4}}$	
	$=\frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\sqrt{2}}\right)^2} =\frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\frac{1}{\sqrt{2}}}\right)^2} =\frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\frac{1}{2}}\right)} =\frac{\frac{1}{\sqrt{2}}}{2.(1)(2)}$	$\frac{1}{4\sqrt{2}} = \frac{1}{4\sqrt{2}} = \frac{\sqrt{2}}{8}$ any of the five underlined expressions or awrt 0.18	B1 aef
	T : $y - \frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(x - 1)$	Finding an equation of a tangent with <i>their point</i> and <i>their tangent</i> <i>gradient</i> or finds <i>c</i> by using $y = (\underline{\text{their gradient}})x + \underline{c}^*$.	M1√ aef
	T: $y = \frac{1}{4\sqrt{2}} X + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8}$	$\frac{\overline{2} \times + \frac{3\sqrt{2}}{8}}{8} \times EXACT equation of tangent}$	<u>A1</u> aef cso
	or $\frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(1) + c \implies c = \frac{1}{\sqrt{2}} -$ Hence T : $\underline{y = \frac{1}{4\sqrt{2}}x + \frac{3}{4\sqrt{2}}}$ or	$\frac{1}{4\sqrt{2}} = \frac{3}{4\sqrt{2}}$	
	Hence T : $y = \frac{1}{4\sqrt{2}} X + \frac{3}{4\sqrt{2}}$ or	$\frac{y = \frac{y + z}{8} x + \frac{3y + z}{8}}{2}$	[5]
	e right way round.	A candidate who incorrectly differentiates $\tan^2 t$ to give $\frac{dx}{dt} = 2 \sec^2 t$ or $\frac{dx}{dt} = \sec^4 t$ is then able to fluke the correct answer in part (b). Such candidates can potentially get: (a) B0M1A1 $$ (b) B1B1B1M1A0 cso . Note: cso means "correct solution only". Note : part (a) not fully correct implies candidate can achieve a maximum of 4 out of 5 marks in part (b).	

Superior Superior

	$x = \tan^2 t = \frac{\sin^2 t}{\cos^2 t} \qquad \qquad y = \sin t$		
Way 1	$x = \frac{\sin^2 t}{1 - \sin^2 t}$	$Uses\cos^2 t = 1 - \sin^2 t$	M1
	$X = \frac{y^2}{1 - y^2}$	Eliminates 't' to write an equation involving x and y.	M1
	$x(1-y^2)=y^2 \implies x-xy^2=y^2$		
	$x = y^2 + xy^2 \implies x = y^2(1+x)$	Rearranging and factorising with an attempt to make <i>y</i> ² the subject.	ddM1
	$y^2 = \frac{x}{1+x}$	$\frac{x}{1+x}$	A1
Aliter (C)	$1 + \cot^2 t = \cos \sec^2 t$	Uses $1 + \cot^2 t = \cos \sec^2 t$	
Way 2	$=\frac{1}{\sin^2 t}$	Uses $\cos ec^2 t = \frac{1}{\sin^2 t}$	
	Hence, $1 + \frac{1}{x} = \frac{1}{y^2}$	Eliminates 't' to write an equation involving x and y.	ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	$1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$	A1 [4]
	$\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final	I accuracy A1 mark.	

Supermanne
Lew 194

Aliter (C)	$x = \tan^2 t$ $y = \sin t$	
Way 3	$1 + \tan^2 t = \sec^2 t \qquad $	sec ² t M1
	$=\frac{1}{\cos^2 t}$ Uses $\sec^2 t =$	$\frac{1}{\cos^2 t}$ M1
	$=\frac{1}{1-\sin^2 t}$	
	Hence, $1+x = \frac{1}{1-y^2}$ Eliminates 't' to write an equinvolving x	
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$ $1 - \frac{1}{(1+x)}$ or	x 1+x A1
Aliter		[4]
(C) Way 4	$y^2 = \sin^2 t = 1 - \cos^2 t$ Uses $\sin^2 t = 1 - \cos^2 t$	cos ² t M1
way 4	$= 1 - \frac{1}{\sec^2 t} \qquad $	$\frac{1}{\sec^2 t}$ M1
	$= 1 - \frac{1}{(1 + \tan^2 t)}$ then uses $\sec^2 t = 1 + \frac{1}{(1 + \tan^2 t)}$	tan ² t ddM1
	Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$ $1 - \frac{1}{(1+x)}$ or	$\frac{x}{1+x}$ A1 [4]
	$\frac{1}{1+\frac{1}{x}}$ is an acceptable response for the final accuracy A1 mark.	

Question Number	Scheme	Marks	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$	M1,A1,A1 (3)	
(b)	If $\frac{dy}{dx} = 0$, $e^x(x^2 + 2x) = 0$ setting $(a) = 0$ $[e^x \neq 0]$ $x(x+2) = 0$	M1	
	$\begin{bmatrix} e^{x} \neq 0 \end{bmatrix} \qquad \begin{array}{c} x(x+2) = 0 \\ (x=0) \\ x = 0, y = 0 \end{array} \qquad \begin{array}{c} x = -2 \\ x = -2, y = 4e^{-2} (=0.54) \end{array}$	A1 A1√ (3)	
	$\frac{d^2 y}{dx^2} = x^2 e^x + 2x e^x + 2x e^x + 2e^x \qquad \left[= (x^2 + 4x + 2) e^x \right]$	M1, A1 (2)	
(<i>d</i>)	$x = 0, \frac{d^2 y}{dx^2} > 0$ (=2) $x = -2, \frac{d^2 y}{dx^2} < 0$ [= -2e ⁻² (= -0.270)] M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's x value(s) from (b)	M1	
	.`minimum .`.maximum	A1 (cso) (2)	
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate y at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve		
		(10 marks)	
 Notes: (a) M for attempt at f(x)g'(x) + f'(x)g(x) 1st A1 for one correct, 2nd A1 for the other correct. Note that x²e^x on its own scores no marks (b) 1st A1 (x = 0) may be omitted, but for 2nd A1 both sets of coordinates needed ; f.t only on candidate's x = -2 			
(c)	(c) M1 requires complete method for candidate's (a), result may be unsimplified for A1		
 (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen, or (in alternative) sign of dy/dx either side correct, or values of y appropriate to t.p. Need only consider the quadratic, as may assume e^x > 0. If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working 			

Question number	Scheme	Marl	ks
	(a) $50\ 000r^{n-1}$ (or equiv.) (Allow ar^{n-1} if $50\ 000r^{n-1}$ is seen in (b))	B1	(1)
	 (b) 50 000rⁿ⁻¹ > 200000 (Using answer to (a), which must include r and n, and 200 000) (Allow equals sign or the wrong inequality sign) (Condone 'slips' such as omitting a zero) 	M1	
	$r^{n-1} > 4 \implies (n-1)\log r > \log 4$ (Introducing logs and dealing correctly with the power) (Allow equals sign or the wrong inequality sign)	M1	
	$n > \frac{\log 4}{\log r} + 1 \tag{(*)}$	A1cso	(3)
	(c) $r = 1.09$: $n > \frac{\log 4}{\log 1.09} + 1$ or $n - 1 > \frac{\log 4}{\log 1.09}$ ($n > 17.086$) (Allow equality)	M1	
	Year 18 or 2023 (If one of these is correct, ignore the other)	A1	(2)
	(d) $S_n = \frac{a(1-r^n)}{1-r} = \frac{50000(1-1.09^{10})}{1-1.09}$	M1 A1	
	£760 000 (Must be this answer nearest £10000)	A1	(3) 9
	(b) <u>Incorrect</u> inequality sign at any stage loses the A mark. Condone missing brackets if otherwise correct, e.g n−1 log r > log 4.		
	A common mistake: $50\ 000r^{n-1} > 200\ 000$ M1 $(n-1)\log 50\ 000r > \log 200\ 000$ M0 ('Recovery' from here is not possible).		
	 (c) Correct answer with no working scores full marks. Year 17 (or 2022) with no working scores M1 A0. Treat other methods (e.g. "year by year" calculation) as if there is no working. 		
	(d) M1: Use of the correct formula with <i>a</i> = 50000, 5000 or 500000, and <i>n</i> = 9, 10, 11 or 15.		
	 M1 can also be scored by a "year by year" method, <u>with terms added</u>. (Allow the M mark if there is evidence of adding 9, 10, 11 or 15 terms). 1st A1 is scored if 10 correct terms have been added (allow "nearest £100"). (50000, 54500, 59405, 64751, 70579, 76931, 83855, 91402, 99628, 108595) 		
	<u>No</u> working shown: Special case: 760 000 scores 1 mark, scored as 1, 0, 0. (Other answers with no working score no marks).		

Question Number	Scheme		Marks
(<i>a</i>)	Finding $g(4) = k$ and $f(k) = \dots$ or $fg(x) = ln\left(\frac{4}{x-3}\right)$	-1)	M1
	[f(2) = ln(2x2 - 1) $fg(4) = ln(4 - 1)]$	$= \ln 3$	A1 (2)
(b)	$y = \ln(2x-1) \implies e^y = 2x-1 \text{ or } e^x = 2y-1$		M1, A1
	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1
	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$] independent	B1 (4)
(c)	°↑ / \	Shape, and x-axis should appear to be asymptote	B1
	Equation $x = 3$ needed, may see in diagram (ignore	Equation $x = 3$ needed, may see in	B1 ind.
		Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph	B1 ind (3)
(<i>d</i>)	$\frac{2}{x-3} = 3 \implies x = 3\frac{2}{3} \text{ or exact equiv.}$ $\frac{2}{x-3} = -3 , \implies x = 2\frac{1}{3} \text{ or exact equiv.}$		B1
	$\frac{2}{x-3} = -3 , \implies x = 2\frac{1}{3} \text{ or exact equiv.}$ Note: $2 = 3(x+3) \text{ or } 2 = 3(-x-3) \text{ o.e. is M0A0}$		M1, A1 (3)
Alt:	Squaring to quadratic $(9x^2 - 54x + 77 = 0)$ and solve	ving M1; B1A1	(12 marks)

Question Number	Scheme		Marks
	$\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} dx$, with substitution $u = 2^{x}$		
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2^x . \ln 2 \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{2^x . \ln 2}$	$\frac{du}{dx} = 2^{x} . \ln 2 \text{ or } \frac{du}{dx} = u . \ln 2$ or $\left(\frac{1}{u}\right) \frac{du}{dx} = \ln 2$	B1
	$\int \frac{2^{x}}{(2^{x}+1)^{2}} dx = \left(\frac{1}{\ln 2}\right) \int \frac{1}{(u+1)^{2}} du$	$k \int \frac{1}{(u+1)^2} \mathrm{d}u$ where k is constant	M1*

Question Number	Scheme	Marks
(a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \cos 2x \implies v = \frac{1}{2}\sin 2x \end{cases}$	
	Int = $\int x \cos 2x dx = \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x \cdot 1 dx$ Correct direction. Correct expression.	M1 A1
	$= \frac{1}{2}x\sin 2x - \frac{1}{2}(-\frac{1}{2}\cos 2x) + c \qquad \text{or} \sin kx \rightarrow -\frac{1}{k}\cos kx \\ \text{with } k \neq 1, k > 0$	dM1
	$= \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$ Correct expression with +c	A1 [4]
(b)	$\int x \cos^2 x dx = \int x \left(\frac{\cos 2x + 1}{2}\right) dx$ Substitutes correctly for $\cos^2 x$ in the given integral	M1
	$=\frac{1}{2}\int x\cos 2x \mathrm{d}x + \frac{1}{2}\int x \mathrm{d}x$	
	$= \frac{1}{2} \left(\frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right); + \frac{1}{2} \int x dx \qquad \qquad \frac{1}{2} (\text{their answer to (a)});$ or <u>underlined expression</u>	A1;√
	$= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^{2}(+c)$ Completely correct expression with/without +c	A1 [3]
		7 marks
Notes:		I
(b)	Int = $\int x \cos 2x dx = \frac{1}{2} x \sin 2x \pm \int \frac{1}{2} \sin 2x \cdot 1 dx$ This is acceptable for M1	M1
	$\begin{cases} U = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \cos 2x \implies v = \lambda \sin 2x \end{cases}$	
	$Int = \int x \cos 2x dx = \lambda x \sin 2x \pm \int \lambda \sin 2x . 1 dx$ This is also acceptable for M1	M1

SHIP WISH

Aliter (b) Way 2	$\int x \cos^2 x dx = \int x \left(\frac{\cos 2x + 1}{2}\right) dx$ $\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \frac{1}{2}\cos 2x + \frac{1}{2} \implies v = \frac{1}{4}\sin 2x + \frac{1}{2}x \end{cases}$	Substitutes <u>correctly</u> for $\cos^2 x$ in the given integral $u = x$ and $\frac{dv}{dx} = \frac{1}{2}\cos 2x + \frac{1}{2}$	M1
	$= \frac{1}{4}x\sin 2x + \frac{1}{2}x^2 - \int \left(\frac{1}{4}\sin 2x + \frac{1}{2}x\right) dx$	1	
	$= \frac{\frac{1}{4}x\sin 2x}{\frac{1}{2}x^{2}} + \frac{\frac{1}{2}x^{2}}{\frac{1}{8}\cos 2x} - \frac{1}{4}x^{2} + c$	$\frac{1}{2}$ (their answer to (a)); or <u>underlined expression</u>	A1√
	$=\frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 (+c)$	Completely correct expression with/without + <i>c</i>	A1 [3]
Aliter (b) Way 3	$\int x \cos 2x \mathrm{d}x = \int x (2 \cos^2 x - 1) \mathrm{d}x$	Substitutes <u>correctly</u> for $\cos 2x$ in $\int x \cos 2x dx$	M1
	$\Rightarrow 2\int x\cos^2 xdx - \int xdx = \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$		
	$\Rightarrow \int x \cos^2 x dx = \frac{1}{2} \left(\frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right); + \frac{1}{2} \int x dx$	$\frac{1}{2}$ (their answer to (a)); or <u>underlined expression</u>	A1;√
	$=\frac{1}{4}x\sin 2x+\frac{1}{8}\cos 2x+\frac{1}{4}x^{2}(+c)$	Completely correct expression with/without +c	A1
			[3] 7 marks

Question Number	Scheme	Marks
(a)	Complete method for R: e.g. $R \cos \alpha = 3$, $R \sin \alpha = 2$, $R = \sqrt{(3^2 + 2^2)}$	M1
	$R = \sqrt{13}$ or 3.61 (or more accurate)	A1
	Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$]	M1
	$\alpha = 0.588$ (Allow 33.7°)	A1 (4)
(b)	Greatest value = $\left(\sqrt{13}\right)^4 = 169$	M1, A1 (2)
(c)	$\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\text{their } R}$	M1
	$(x+0.588) = 0.281(03) \text{ or } 16.1^{\circ}$	A1
	(x + 0.588) = π - 0.28103 Must be π - their 0.281 or 180° - their 16.1°	M1
	or $(x + 0.588)$ = $2\pi + 0.28103$ Must be $2\pi +$ their 0.281 or $360^{\circ} +$ their 16.1°	M1
	x = 2.273 or $x = 5.976$ (awrt) Both (radians only)	A1 (5)
	If 0.281 or 16.1° not seen, correct answers imply this A mark	(11 marks)

 Notes: (a) 1st M1 for correct method for R 2nd M1 for correct method for tan α No working at all: M1A1 for √13, M1A1 for 0.588 or 33.7°.
 N.B. Rcos α = 2, Rsin α = 3 used, can still score M1A1 for R, but loses the A mark for α. cosα = 3, sin α = 2: apply the same marking.

- (b) M1 for realising sin(x + α) = ±1, so finding R⁴.
- (c) Working in mixed degrees/rads : first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.
- Alt: (c)(i) Squaring to form quadratic in sin x or cos xM1 $[13\cos^2 x 4\cos x 8 = 0, 13\sin^2 x 6\sin x 3 = 0]$ Correct values for cos x = 0.953..., -0.646; or $\sin x = 0.767, 2.27$ awrtA1For any one value of cos x or sinx, correct method for two values of xM1x = 2.273 or x = 5.976 (awrt) Both seen anywhereA1Checking other values (0.307, 4.011 or 0.869, 3.449) and discardingM1
 - (ii) Squaring and forming equation of form $a \cos 2x + b \sin 2x = c$ $9 \sin^2 x + 4 \cos^2 x + 12 \sin 2x = 1 \Rightarrow 12 \sin 2x + 5 \cos 2x = 11$ Setting up to solve using R formula e.g. $\sqrt{13} \cos(2x - 1.176) = 11$ M1

$$(2x-1.176) = \cos^{-1}\left(\frac{11}{\sqrt{13}}\right) = 0.562(0... \quad (\alpha)$$
 A1

$$(2x-1.176) = 2\pi - \alpha, \ 2\pi + \alpha, \dots$$
 M1

$$x = 2.273$$
 or $x = 5.976$ (awrt) Both seen anywhere A1
Checking other values and discarding M1

Question Number	Scheme		Marks
(<i>a</i>)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$ M1 Use of common denominator to obtain single fra	M1	
	$=\frac{1}{\cos\theta\sin\theta}$	M1	
	M1 Use of appropriate trig identity (in this case sin $= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of sin $= 2\operatorname{cosec} 2\theta$ (*)	$\theta + \cos^2 \theta = 1$ $n 2\theta = 2 \sin \theta \cos \theta$	M1 A1 cso (4)
Alt.(a)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \tan\theta + \frac{1}{\tan\theta} = \frac{\tan^2\theta + 1}{\tan\theta}$	M1	
	$=\frac{\sec^2\theta}{\tan\theta}$	M1	
	$=\frac{1}{\cos\theta\sin\theta}=\frac{1}{\frac{1}{2}\sin2\theta}$	M1	
	= $2 \csc 2\theta$ (*) (c If show two expressions are equal, need conclusion suc		
(b)		Shape (May be translated but need to see 4"sections")	B1
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T.P.s at $y = \pm 2$, asymptotic at correct x-values (dotted lines not required)	B1 dep. (2)

Question Number	Scheme		Marks
(a)	$\frac{\mathrm{d}P}{\mathrm{d}t} = kP \text{and} t = 0, \ P = P_0 (1)$		
	$\int \frac{\mathrm{d}P}{P} = \int k \mathrm{d}t$	Separates the variables with $\int \frac{dP}{P}$ and $\int k dt$ on either side with integral signs not necessary.	M1
	$\ln P = kt; (+c)$	Must see In <i>P</i> and <i>kt</i> ; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \ln P_0 = c$ (or $P = Ae^{kt} \implies P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\ln P = kt + \ln P_0 \implies e^{\ln P} = e^{kt + \ln P_0} = e^{kt} \cdot e^{\ln P_0}$		
	Hence, $\underline{P = P_0 e^{kt}}$	$\underline{P = P_0 e^{kt}}$	A1 [4]
(b)	$P = 2P_0 \& k = 2.5 \implies 2P_0 = P_0 e^{2.5t}$	Substitutes $P = 2P_0$ into an expression involving P	M1
	$e^{2.5t} = 2 \implies \underline{\ln e^{2.5t}} = \underline{\ln 2}$ or $\underline{2.5t} = \underline{\ln 2}$ or $e^{kt} = 2 \implies \underline{\ln e^{kt}} = \underline{\ln 2}$ or $\underline{kt} = \underline{\ln 2}$	Eliminates <i>P</i> ₀ and takes In of both sides	M1
	$\Rightarrow t = \frac{1}{2.5} \ln 2 = 0.277258872 \text{ days}$		
	$t = 0.277258872 \times 24 \times 60 = 399.252776$ minutes		
	t = 399 min or $t = 6 hr 39 mins$ (to nearest minute)	awrt $t = 399$ or <u>6 hr 39 mins</u>	A1 [3]
	I		
	$P = P_0 e^{kt}$ written down without the first M1 mark given score	es all four marks in part (a).	

A CLAR ALLS			
(c)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \lambda P \cos \lambda t \text{and} t = 0, \ P = P_0 (1)$		
	$\int \frac{\mathrm{d}P}{P} = \int \lambda \cos \lambda t \mathrm{d}t$	Separates the variables with $\int \frac{dP}{P}$ and $\int \lambda \cos \lambda t dt$ on either side with integral signs not necessary.	M1
	$\ln P = \sin \lambda t; (+ c)$	Must see In <i>P</i> and sin <i>λt</i> ; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \ln P_0 = c$ (or $P = Ae^{\sin \lambda t} \implies P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\ln P = \sin \lambda t + \ln P_0 \implies e^{\ln P} = e^{\sin \lambda t + \ln P_0} = e^{\sin \lambda t} \cdot e^{\ln P_0}$		
	Hence, $\underline{P = P_0 e^{\sin \lambda t}}$	$\underline{P = P_0 e^{\sin \lambda t}}$	A1 [4]
(d)	$P = 2P_0 \& \lambda = 2.5 \implies 2P_0 = P_0 e^{\sin 2.5t}$		
	$e^{\sin 2.5t} = 2 \implies \underline{\sin 2.5t} = \ln 2$ or $e^{\lambda t} = 2 \implies \underline{\sin \lambda t} = \ln 2$	Eliminates <i>P</i> ₀ and makes sin <i>λt</i> or sin 2.5 <i>t</i> the subject by taking In's	M1
	$\frac{t = \frac{1}{2.5} \sin^{-1}(\ln 2)}{t = 0.306338477}$	Then rearranges to make <i>t</i> the subject. (must use sin ⁻¹)	dM1
	$t = 0.306338477 \times 24 \times 60 = 441.1274082$ minutes		
	t = 441min or $t = 7$ hr 21 mins (to nearest minute)	awrt <i>t</i> = <u>441</u> or <u>7 hr 21 mins</u>	A1 [3]
			14 marks
$\underline{P = P_0 e^{\sin \lambda t}}$ written down without the first M1 mark given scores all four marks in part (c).			

a Rermanna

	$\frac{\mathrm{d}P}{\mathrm{d}t} = kP \text{and} t = 0, \ P = P_0 (1)$		
<i>Aliter</i> (a) Way 2	$\int \frac{\mathrm{d}P}{kP} = \int 1 \mathrm{d}t$	Separates the variables with $\int \frac{dP}{kP}$ and $\int dt$ on either side with integral signs not necessary.	M1
	$\frac{1}{k}\ln P = t; (+c)$	Must see $\frac{1}{k} \ln P$ and t ; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \implies \frac{1}{k} \ln P_0 = c$ (or $P = Ae^{kt} \implies P_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\frac{1}{k}\ln P = t + \frac{1}{k}\ln P_0 \implies \ln P = kt + \ln P_0$ $\implies e^{\ln P} = e^{kt + \ln P_0} = e^{kt} \cdot e^{\ln P_0}$		
	Hence, $\underline{P = P_0 e^{kt}}$	$\underline{P} = P_0 e^{kt}$	A1 [4]
Aliter (a) Way 3	$\int \frac{\mathrm{d}P}{kP} = \int 1 \mathrm{d}t$	Separates the variables with $\int \frac{dP}{kP}$ and $\int dt$ on either side with integral signs not necessary.	M1
	$\frac{1}{k}\ln(kP) = t; (+c)$	Must see $\frac{1}{k} \ln(kP)$ and t ; Correct equation with/without + c.	A1
	When $t = 0$, $P = P_0 \Rightarrow \frac{1}{k} \ln(kP_0) = c$ (or $kP = Ae^{kt} \Rightarrow kP_0 = A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$ \begin{split} & \frac{1}{k} \ln \left(kP \right) = t + \frac{1}{k} \ln \left(kP_0 \right) \implies \ln \left(kP \right) = kt + \ln \left(kP_0 \right) \\ & \implies e^{\ln(kP)} = e^{kt + \ln(kP_0)} = e^{kt} \cdot e^{\ln(kP_0)} \end{split} $		
	$\Rightarrow kP = e^{kt} . (kP_0) \Rightarrow kP = kP_0 e^{kt}$ (or $kP = kP_0 e^{kt}$)		
	Hence, $\underline{P = P_0 e^{kt}}$	$\underline{P} = P_0 e^{kt}$	A1 [4]

^otkerm, π

After
(c)
Way 3

$$\begin{aligned}
\frac{dP}{dt} = \lambda P \cos \lambda t \quad \text{and} \quad t = 0, P = P_0 \quad (1) \\
& \text{Separates the variables} \\
& \text{with } \int \frac{dP}{\lambda P} = \int \cos \lambda t \, dt \\
\int \frac{dP}{\lambda P} = \int \cos \lambda t \, dt \\
\int \frac{dP}{\lambda P} = \int \cos \lambda t \, dt \\
& \int \cos \lambda t \, dt \text{ on ether side} \\
& \text{with integral signs not} \\
& \text{necessary.} \\
& \text{Must see } \frac{1}{2} \ln (\lambda P) \text{ and} \\
& \frac{1}{2} \ln (\lambda P) = \frac{1}{2} \sin \lambda t : (+ c) \\
& \text{When } t = 0, P = P_0 = \frac{1}{2} \ln (\lambda P_0) = c \\
& \text{(or } \lambda P = A e^{i \theta \cdot \lambda t} = \lambda P_0 = A \\
& \text{(f) to attempt to find the} \\
& \text{(or } \lambda P = A e^{i \theta \cdot \lambda t} = \lambda P_0 = A \\
& \text{(f) to attempt to find the} \\
& \frac{1}{2} \ln (\lambda P) = \frac{1}{2} \sin \lambda t + \frac{1}{2} \ln (\lambda P_0) = c \\
& \text{(f) to attempt to find the} \\
& \frac{1}{2} \ln (\lambda P) = \frac{1}{2} \sin \lambda t + \frac{1}{2} \ln (\lambda P_0) \\
& = \ln (\lambda P) = \sin \lambda t + \ln (\lambda P_0) \\
& = e^{i \theta \cdot \lambda P} = e^{i \theta \cdot \lambda T} e^{i \theta \cdot \lambda P} \\
& = \lambda P = e^{i \theta \cdot \lambda T} e^{i \theta \cdot \lambda P} \\
& \text{Hence, } \frac{P = P_0 e^{i \theta \cdot \lambda T}}{P = P_0 e^{i \theta \cdot \lambda T}} \\
& \text{Hences a method mark which is dependent upon the award of the previous method mark.} \\
& \text{ddM1 denotes a method mark which is dependent upon the award of M1*.} \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a method mark which is dependent upon the award of M1*. \\
& \text{f denotes a follow through} \\
& \text{f denotes a method mark which is dependent upon$$

aef denotes "any equivalent form"

^{eikerm}