Pure Mathematics 2 Practice Paper M7 MARK SCHEME

Question 1

Question Number	Scheme	Marks
1.	'Assume that there exists a product of two odd numbers that is even $(2 m+1)(2 n+1)=4 m n+2 m+2 n+1$ $=2(2 m n+m+n)+1$ $2(2 m n+m+n)$ is even so $2(2 m n+m+n)+1$ must be odd This contradicts the assumption that the product of two odd numbers is even, therefore the product of two odd numbers is odd	B1

Question 2

(b)

Some candidates may find rational values for B and C. They may combine the denominator of their B or C with $(2 x+1)$ or $(2 x-1)$. Hence:
Either $\frac{a}{b(2 x-1)} \rightarrow k \ln (b(2 x-1))$ or $\frac{a}{b(2 x+1)} \rightarrow k \ln (b(2 x+1))$ is okay for M1.

Candidates are not allowed to fluke $-\ln (2 x+1)+\ln (2 x-1)$ for A1. Hence cso. If they do fluke this, however, they can gain the final A1 mark for this part of the question.

To award this M1 mark, the candidate must use the appropriate law(s) of logarithms for their In terms to give a one single logarithmic term. Any error in applying the laws of logarithms would then earn M0.

Question 3

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline (a)

(b) \& \begin{tabular}{l}
$$
\begin{array}{cl}
x=\tan ^{2} t, & y=\sin t \\
\frac{\mathrm{~d} x}{\mathrm{~d} t}=2(\tan t) \sec ^{2} t, & \frac{\mathrm{~d} y}{\mathrm{~d} t}=\cos t \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\cos t}{2 \tan t \sec ^{2} t}\left(=\frac{\cos ^{4} t}{2 \sin t}\right) & \text { Correct } \frac{\mathrm{d} x}{\mathrm{~d} t} \text { and } \frac{\mathrm{d} y}{\mathrm{dt}} \\
\frac{ \pm \cos t}{\text { their } \frac{\mathrm{dx}}{\mathrm{~d} t}} \\
\frac{+\cos t}{\text { their } \frac{\mathrm{dx}}{\mathrm{dt}}}
\end{array}
$$

When $t=\frac{\pi}{4}, \quad x=1, y=\frac{1}{\sqrt{2}} \quad$ (need values)

The point $\left(1, \frac{1}{\sqrt{2}}\right)$ or (1, awrt 0.71$)$

These coordinates can be implied. ($y=\sin \left(\frac{\pi}{4}\right)$ is not sufficient for B1)

When $t=\frac{\pi}{4}, \mathrm{~m}(\mathbf{T})=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cos \frac{\pi}{4}}{2 \tan \frac{\pi}{4} \sec ^{2} \frac{\pi}{4}}$

 \&

M1

A1 $\sqrt{ }$

[3]

B1, B1
\end{tabular}

\hline \& | T: $y-\frac{1}{\sqrt{2}}=\frac{1}{4 \sqrt{2}}(x-1)$ |
| :--- |
| any of the five underlined expressions or awrt 0.18 |
| Finding an equation of a tangent with their point and their tangent gradient or finds c by using $y=($ their gradient $) x+" \underline{c}$ " |
| T: $\underline{y=\frac{1}{4 \sqrt{2}} x+\frac{3}{4 \sqrt{2}}}$ or $\quad \underline{y=\frac{\sqrt{2}}{8} x+\frac{3 \sqrt{2}}{8}} \quad$ Correct simplified EXACT equation of tangent |
| Hence T: $\underline{y=\frac{1}{4 \sqrt{2}} x+\frac{3}{4 \sqrt{2}} \quad \text { or } \quad y=\frac{\sqrt{2}}{8} x+\frac{3 \sqrt{2}}{8}}$ | \& | B1 aef |
| :--- |
| M1 $\sqrt{ }$ aef |
| A1 aef cso |

\hline Note: T must be \& | A candidate who incorrectly differentiates $\tan ^{2} t$ to give $\frac{\mathrm{ox}}{\mathrm{dt}}=2 \sec ^{2} t$ or $\frac{\mathrm{dx}}{\mathrm{dt}}=\sec ^{4} t$ is then able to fluke the correct answer in part (b). Such candidates can potentially get: (a) B0M1A1 $\sqrt{ }$ (b) B1B1B1M1A0 cso. Note: cso means "correct solution only". |
| :--- |
| Note: part (a) not fully correct implies candidate can achieve a maximum of 4 out of 5 marks in part (b). | \&

\hline
\end{tabular}

$$
x=\tan ^{2} t \quad y=\sin t
$$

Way 3

$$
\begin{aligned}
1+\tan ^{2} t & =\sec ^{2} t & \text { Uses } 1+\tan ^{2} t=\sec ^{2} t \\
& =\frac{1}{\cos ^{2} t} & \text { Uses } \sec ^{2} t=\frac{1}{\cos ^{2} t} \\
& =\frac{1}{1-\sin ^{2} t} &
\end{aligned}
$$

Hence, $\quad 1+x=\frac{1}{1-y^{2}}$
Eliminates ' t ' to write an equation involving x and y.

Hence, $y^{2}=1-\frac{1}{(1+x)}$ or $\frac{x}{1+x}$

$$
1-\frac{1}{(1+x)} \text { or } \frac{x}{1+x}
$$

Aliter
(c)

$$
\begin{aligned}
y^{2}=\sin ^{2} t & =1-\cos ^{2} t \\
& =1-\frac{1}{\sec ^{2} t} \\
& =1-\frac{1}{\left(1+\tan ^{2} t\right)}
\end{aligned}
$$

$$
\text { Uses } \sin ^{2} t=1-\cos ^{2} t
$$

$$
\text { Uses } \cos ^{2} t=\frac{1}{\sec ^{2} t}
$$

then uses $\sec ^{2} t=1+\tan ^{2} t$

Hence, $y^{2}=1-\frac{1}{(1+x)}$ or $\frac{x}{1+x}$

$$
1-\frac{1}{(1+x)} \text { or } \frac{x}{1+x}
$$

$$
\frac{1}{1+\frac{1}{x}} \text { is an acceptable response for the final accuracy A1 mark. }
$$

(c)

$$
x=\tan ^{2} t \quad y=\sin t
$$

Way 5

$$
x=\tan ^{2} t \Rightarrow \tan t=\sqrt{x}
$$

Draws a right-angled triangle and places both \sqrt{x} and 1 on the triangle

Uses Pythagoras to deduce the hypotenuse

Eliminates 't' to write an equation involving x and y.
Hence, $y=\sin t=\frac{\sqrt{x}}{\sqrt{1+x}}$

Hence, $y^{2}=\frac{x}{1+x}$

$$
\frac{1}{1+\frac{1}{x}} \text { is an acceptable response for the final accuracy A1 mark. }
$$

There are so many ways that a candidate can proceed with part (c). If a candidate produces a correct solution then please award all four marks. If they use a method commensurate with the five ways as detailed on the mark scheme then award the marks appropriately. If you are unsure of how to apply the scheme please escalate your response up to your team leader.

Question 4

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}$	M1,A1,A1 (3)
(b)	$\begin{array}{\|lcl} \hline \text { If } \frac{\mathrm{d} y}{\mathrm{~d} x}=0, & \mathrm{e}^{x}\left(x^{2}+2 x\right)=0 & \text { setting }(a)=0 \\ {\left[\mathrm{e}^{x} \neq 0\right]} & x(x+2)=0 & \\ & (x=0) & \tag{3}\\ & x=0, y=0 & \text { and } \\ & x=-2, y=4 \mathrm{e}^{-2}(=0.54 \ldots) \\ \hline \end{array}$	M1 A1 $\mathrm{A} 1 \sqrt{ }$
(c)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} \mathrm{x}^{2}}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 \mathrm{e}^{x} \quad\left[=\left(x^{2}+4 x+2\right) \mathrm{e}^{x}\right]$	M1, A1 (2)
(d)	$x=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0(=2) \quad x=-2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0 \quad\left[=-2 \mathrm{e}^{-2}(=-0.270 \ldots)\right]$ M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's x value(s) from (b) \therefore minimum \therefore maximum	M1 A1 (cso) (2)
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at two appropriate values - on either side of at least one of their answers from (b) or Evaluate y at two appropriate values - on either side of at least one of their answers from (b) or Sketch curve	(10 marks)

Notes: (a) M for attempt at $f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$1^{\text {st }} \mathrm{A} 1$ for one correct, $2^{\text {nd }} \mathrm{A} 1$ for the other correct.
Note that $x^{2} e^{x}$ on its own scores no marks
(b) $1^{\text {st }} \mathrm{A} 1(x=0)$ may be omitted, but for
$2^{\text {nd }} \mathrm{A} 1$ both sets of coordinates needed ; f.t only on candidate's $x=-2$
(c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
(d) A1 is $\operatorname{cso} ; x=0, \min$, and $x=-2$, max and no incorrect working seen, or (in alternative) sign of $\frac{d y}{d x}$ either side correct, or values of y appropriate to t.p.
Need only consider the quadratic, as may assume $\mathrm{e}^{x}>0$.
If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

Question 5

Question 6

Question 7

Question Number	Scheme		Marks
	$\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} d x$, with substitution $u=2^{x}$ $\frac{\mathrm{d} u}{\mathrm{~d} x}=2^{\mathrm{x}} \cdot \ln 2 \quad \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=\frac{1}{2^{x} \cdot \ln 2}$ $\int \frac{2^{x}}{\left(2^{x}+1\right)^{2}} \mathrm{~d} x=\left(\frac{1}{\ln 2}\right) \int \frac{1}{(u+1)^{2}} \mathrm{~d} u$	$\begin{array}{r} \frac{d u}{d x}=2^{x} \cdot \ln 2 \text { or } \frac{d u}{d x}=u \cdot \ln 2 \\ \text { or }\left(\frac{1}{u}\right) \frac{d u}{d x}=\ln 2 \\ \\ k \int \frac{1}{(u+1)^{2}} \mathrm{~d} u \end{array}$ where k is constant	B1 M1*

Question 8

Question 9

Question Number	Scheme	Marks
(a) (b) (c)	Complete method for R : e.g. $R \cos \alpha=3, R \sin \alpha=2, R=\sqrt{\left(3^{2}+2^{2}\right)}$ $R=\sqrt{13} \quad$ or 3.61 (or more accurate) Complete method for $\tan \alpha=\frac{2}{3} \quad$ [Allow $\tan \alpha=\frac{3}{2}$] $\alpha=0.588 \quad\left(\text { Allow } 33.7^{\circ}\right)$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \text { (4) } \end{array}$
	Greatest value $=(\sqrt{13})^{4}=169$	M1, A1 (2)
		M1 A1 M1 M1 A1 (5) (11 marks)

Notes: (a) $1^{\text {st }} \mathrm{M} 1$ for correct method for R
$2^{\text {nd }}$ M1 for correct method for $\tan \alpha$
No working at all: M1A1 for $\sqrt{ } 13$, M1A1 for 0.588 or 33.7°.
N.B. R $\cos \alpha=2, R \sin \alpha=3$ used, can still score M1A1 for R, but loses the A mark for α. $\cos \alpha=3, \sin \alpha=2$: apply the same marking.
(b) M1 for realising $\sin (x+\alpha)= \pm 1$, so finding R^{4}.
(c) Working in mixed degrees/rads : first two marks available

Working consistently in degrees: Possible to score first 4 marks
[Degree answers, just for reference only, are 130.2° and 342.4°]
Third M1 can be gained for candidate's 0.281 - candidate's $0.588+2 \pi$ or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.

Alt: (c) (i) Squaring to form quadratic in $\sin x$ or $\cos x$
$\left[13 \cos ^{2} x-4 \cos x-8=0, \quad 13 \sin ^{2} x-6 \sin x-3=0\right]$
Correct values for $\cos x=0.953 \ldots,-0.646$; or $\sin x=0.767,2.27$ awrt A1
For any one value of $\cos x$ or $\sin x$, correct method for two values of $x \quad$ M1
$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values $(0.307,4.011$ or $0.869,3.449)$ and discarding M1
(ii) Squaring and forming equation of form $a \cos 2 x+b \sin 2 x=c$
$9 \sin ^{2} x+4 \cos ^{2} x+12 \sin 2 x=1 \Rightarrow 12 \sin 2 x+5 \cos 2 x=11$
Setting up to solve using R formula e.g. $\sqrt{ } 13 \cos (2 x-1.176)=11 \quad$ M1

$$
(2 x-1.176)=\cos ^{-1}\left(\frac{11}{\sqrt{13}}\right)=0.562(0 \ldots \quad(\alpha) \quad \mathrm{A} 1
$$

$$
(2 x-1.176)=2 \pi-\alpha, 2 \pi+\alpha, \ldots \ldots \ldots . \quad \text { M1 }
$$

$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values and discarding

Question 10

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \multicolumn{2}{|l|}{Scheme} \& Marks \\
\hline (a)

Alt. (a) \& \begin{tabular}{l}
$$
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}
$$

M1 Use of common denominator to obtain single
$$
=\frac{1}{\cos \theta \sin \theta}
$$

M1 Use of appropriate trig identity (in this case sis
$$
\begin{aligned}
& =\frac{1}{\frac{1}{2} \sin 2 \theta} \\
& =2 \operatorname{cosec} 2 \theta
\end{aligned}
$$
$$
\begin{aligned}
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\tan \theta+\frac{1}{\tan \theta} & =\frac{\tan ^{2} \theta+1}{\tan \theta} \\
& =\frac{\sec ^{2} \theta}{\tan \theta} \\
& =\frac{1}{\cos \theta \sin \theta}=\frac{1}{\frac{1}{2} \sin 2 \theta} \\
& =2 \operatorname{cosec} 2 \theta \quad(*)
\end{aligned}
$$

If show two expressions are equal, need conclusion s

 \&

ction

$$
\begin{aligned}
& \left.2 \theta+\cos ^{2} \theta=1\right) \\
& \mathrm{n} 2 \theta=2 \sin \theta \cos \theta
\end{aligned}
$$

M1

M1

M1

cso)

A1

as QED tick, true.

 \&

M1

M1

M1

A1 cso

(4)
\end{tabular}

\hline (b) \& \& | Shape |
| :--- |
| (May be translated but need to see 4"sections") |
| T.P.s at $y= \pm 2$, |
| asymptotic at correct x-values (dotted lines not required) | \& | B1 |
| :--- |
| B1 dep. |
| (2) |

\hline
\end{tabular}

Question 11

Aliter (a) Way 2	$\begin{equation*} \frac{\mathrm{d} P}{\mathrm{~d} t}=k P \quad \text { and } \quad t=0, P=P_{0} \tag{1} \end{equation*}$		M1
	$\int \frac{\mathrm{d} P}{k P}=\int 1 \mathrm{~d} t$	Separates the variables with $\int \frac{\mathrm{d} P}{\mathrm{k} P}$ and $\int \mathrm{d} t$ on either side with integral signs not necessary.	
	$\frac{1}{k} \ln P=t ;(+c)$	Must see $\frac{1}{k} \ln P$ and t; Correct equation with/without + C.	A1
	When $t=0, P=P_{0} \Rightarrow \frac{1}{k} \ln P_{0}=c$ (or $P=A e^{k t} \Rightarrow P_{0}=A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\begin{aligned} & \frac{1}{k} \ln P=t+\frac{1}{k} \ln P_{0} \Rightarrow \ln P=k t+\ln P_{0} \\ & \Rightarrow e^{\ln P}=e^{k t+\ln P_{0}}=e^{k t} \cdot e^{\ln R} \end{aligned}$		
	Hence, $P=P_{0} e^{k t}$	$P=P_{0} e^{k t}$	A1
			[4]
Aliter (a) Way 3	$\int \frac{\mathrm{d} P}{k P}=\int 1 \mathrm{~d} t$$\frac{1}{k} \ln (k P)=t ;(+$	Separates the variables with $\int \frac{\mathrm{d} P}{k P}$ and $\int \mathrm{d} t$ on either side with integral signs not necessary.	M1
		Must see $\frac{1}{\kappa} \ln (k P)$ and t; Correct equation with/without + C.	A1
	$\begin{aligned} & \text { When } t=0, P=P_{0} \Rightarrow \frac{1}{k} \ln \left(k P_{0}\right)=c \\ & \text { (or } \left.k P=A e^{k t} \Rightarrow k P_{0}=A\right) \\ & \frac{1}{k} \ln (k P)=t+\frac{1}{k} \ln \left(k P_{0}\right) \Rightarrow \ln (k P)=k t+\ln \left(k P_{0}\right) \\ & \Rightarrow e^{\ln (k P)}=e^{k t+\ln \left(k P_{0}\right)}=e^{k t} \cdot e^{\ln \left(k R_{0}\right)} \\ & \Rightarrow k P=e^{k t} \cdot\left(k P_{0}\right) \Rightarrow k P=k P_{0} e^{k t} \\ & \left(\text { or } k P=k P_{0} e^{k t}\right) \end{aligned}$	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	Hence, $\underline{P=P_{0} e^{k t}}$	$\underline{P=P_{0} e^{k t}}$	A1
			[4]

Aliter (c) Way 2	$\begin{equation*} \frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t \quad \text { and } \quad t=0, P=P_{0} \tag{1} \end{equation*}$		M1
	$\int \frac{\mathrm{d} P}{\lambda P}=\int \cos \lambda t \mathrm{~d} t$	Separates the variables with $\int \frac{\mathrm{d} P}{\lambda P}$ and $\int \cos \lambda t \mathrm{~d} t$ on either side with integral signs not necessary.	
	$\frac{1}{\lambda} \ln P=\frac{1}{\lambda} \sin \lambda t ;(+c)$	Must see $\frac{1}{\lambda} \ln P$ and $\frac{1}{\lambda} \sin \lambda t ;$ Correct equation with/without + c	A1
	When $t=0, P=P_{0} \Rightarrow \frac{1}{\lambda} \ln P_{0}=c$ (or $P=A e^{5 n \lambda t} \Rightarrow P_{0}=A$)	Use of boundary condition (1) to attempt to find the constant of integration.	M1
	$\frac{1}{\lambda} \ln P=\frac{1}{\lambda} \sin \lambda t+\frac{1}{\lambda} \ln P_{0} \Rightarrow \ln P=\sin \lambda t+\ln P_{0}$		
	$\Rightarrow e^{\ln P}=e^{\operatorname{sn} \lambda t+\ln P_{0}}=e^{\operatorname{sln} \lambda t} \cdot e^{\ln P_{0}}$		
	Hence, $P=P_{0} e^{\text {shit }}$	$\underline{P}=P_{0} e^{\operatorname{sln} \lambda t}$	A1
			[4]
	$P=P_{0} \mathrm{e}^{k t}$ written down without the first M1 mark	res all four marks in part	
	$P=P_{0} e^{\text {andt }}$ written down without the first M 1 m	res all four marks in part	

Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark. ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
depM1* denotes a method mark which is dependent upon the award of M1*.
ft denotes "follow through"
cao denotes "correct answer only"
aef denotes "any equivalent form"

