Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M7

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

Use proof by contradiction to prove the statement: 'The product of two odd numbers is odd.'
(Total 3 marks)

Question 2

$$
\frac{2\left(4 x^{2}+1\right)}{(2 x+1)(2 x-1)} \equiv A+\frac{B}{(2 x+1)}+\frac{C}{(2 x-1)} .
$$

(a) Find the values of the constants A, B and C.
(b) Hence show that the exact value of $\int_{1}^{2} \frac{2\left(4 x^{2}+1\right)}{(2 x+1)(2 x-1)} \mathrm{d} x \quad$ is $2+\ln k$, giving the value of the constant k.

Question 3

A curve has parametric equations

$$
x=\tan ^{2} t, \quad y=\sin t, \quad 0<t<\frac{\pi}{2} .
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t. You need not simplify your answer.
(b) Find an equation of the tangent to the curve at the point where $t=\frac{\pi}{4}$.

Give your answer in the form $y=a x+b$, where a and b are constants to be determined.
(c) Find a cartesian equation of the curve in the form $y^{2}=f(x)$.

Question 4

A curve C has equation

$$
y=x^{2} e^{x} .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, using the product rule for differentiation.
(b) Hence find the coordinates of the turning points of C.
(c) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(d) Determine the nature of each turning point of the curve C.

Question 5

A trading company made a profit of $£ 50000$ in 2006 (Year 1).
A model for future trading predicts that profits will increase year by year in a geometric sequence with common ratio $r, r>1$.

The model therefore predicts that in 2007 (Year 2) a profit of $£ 50000$ r will be made.
(a) Write down an expression for the predicted profit in Year n.

The model predicts that in Year n, the profit made will exceed $£ 200000$.
(b) Show that $n>\frac{\log 4}{\log r}+1$.

Using the model with $r=1.09$,
(c) find the year in which the profit made will first exceed $£ 200000$,
(d) find the total of the profits that will be made by the company over the 10 years from 2006 to 2015 inclusive, giving your answer to the nearest $£ 10000$.

Question 6

The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto \ln (2 x-1), & x \in \mathbb{R}, x>\frac{1}{2} \\
\mathrm{~g}: x \mapsto \frac{2}{x-3}, & x \in \mathbb{R}, x \neq 3
\end{array}
$$

(a) Find the exact value of $\mathrm{fg}(4)$.
(b) Find the inverse function $\mathrm{f}^{-1}(x)$, stating its domain.
(c) Sketch the graph of $y=|g(x)|$. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis.
(d) Find the exact values of x for which $\left|\frac{2}{x-3}\right|=3$.

Question 7

Use the substitution $u=2^{x}$ to find the exact value of

$$
\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} \mathrm{~d} x
$$

Question 8

(a) Find $\int x \cos 2 x d x$.
(b) Hence, using the identity $\cos 2 x=2 \cos ^{2} x-1$, deduce $\int x \cos ^{2} x \mathrm{~d} x$.

Question 9

(a) Express $3 \sin x+2 \cos x$ in the form $R \sin (x+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) Hence find the greatest value of $(3 \sin x+2 \cos x)^{4}$.
(c) Solve, for $0<x<2 \pi$, the equation

$$
3 \sin x+2 \cos x=1
$$

giving your answers to 3 decimal places.

Question 10

(a) Prove that

$$
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=2 \operatorname{cosec} 2 \theta, \quad \theta \neq 90 n^{\circ}
$$

(b) On the axes below, sketch the graph of $y=2 \operatorname{cosec} 2 \theta$ for $0^{\circ}<\theta<360^{\circ}$.

Question 11

A population growth is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P
$$

where P is the population, t is the time measured in days and k is a positive constant.
Given that the initial population is P_{0},
(a) solve the differential equation, giving P in terms of P_{0}, k and t.

Given also that $k=2.5$,
(b) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$.

In an improved model the differential equation is given as

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t
$$

where P is the population, t is the time measured in days and λ is a positive constant.
Given, again, that the initial population is P_{0} and that time is measured in days,
(c) solve the second differential equation, giving P in terms of P_{0}, λ and t.

Given also that $\lambda=2.5$,
(d) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$ for the first time, using the improved model.

