

# Pure Mathematics 2 Practice Paper M8 MARK SCHEME

| Question<br>Number | Scheme                                                                                                                                                                                                       | Marks      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a)                | 5, 7, 9, 11 or $5+2+2+2=11$ or $5+6=11$                                                                                                                                                                      |            |
|                    | use $a = 5$ , $d = 2$ , $n = 4$ and $t_4 = 5 + 3 \times 2 = 11$                                                                                                                                              | B1 (1)     |
| (b)                | $t_n = a + (n-1)d$ with one of $a = 5$ or $d = 2$ correct                                                                                                                                                    | M1         |
|                    | = 5 + 2(n-1) or $2n+3$ or $1+2(n+1)$                                                                                                                                                                         | A1 (2)     |
| (c)                | $S_n = \frac{n}{2} [2 \times 5 + 2(n-1)] \text{ or use of } \frac{n}{2} (5 + \text{"their } 2n + 3\text{"})$ $= \{n(5+n-1)\} = n(n+4)  (*)$ $43 = 2n+3$ $[n] = 20$ $S_n = 20 \times 24 = 480 \text{ (free)}$ | M1 A1      |
|                    | $= \{n(5+n-1)\} = n(n+4)  (*)$                                                                                                                                                                               | A1 cso (3) |
| (d)                | 43 = 2n + 3                                                                                                                                                                                                  | M1         |
|                    | [n] = 20                                                                                                                                                                                                     | A1 (2)     |
| (e)                | $S_{20} = 20 \times 24$ , = $480$ (km)                                                                                                                                                                       | M1 A1 (2)  |
|                    |                                                                                                                                                                                                              | (10 marks) |



| Question<br>Number | Scheme                                                                                                        | Marks      |
|--------------------|---------------------------------------------------------------------------------------------------------------|------------|
| (a)                | $x^2-2x-3=(x-3)(x+1)$                                                                                         | B1         |
|                    | $f(x) = \frac{2(x-1)-(x+1)}{(x-3)(x+1)} \left( or \frac{2(x-1)}{(x-3)(x+1)} - \frac{x+1}{(x-3)(x+1)} \right)$ | M1 A1      |
|                    | $= \frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} *$                                                                  | A1 cso (4) |
| (b)                | $\left(0, \frac{1}{4}\right)$ Accept $0 < y < \frac{1}{4}$ , $0 < f(x) < \frac{1}{4}$ etc.                    | B1 B1 (2)  |
| (c)                | Let $y = f(x)$ $y = \frac{1}{x+1}$                                                                            |            |
|                    | $x = \frac{1}{y+1}$                                                                                           |            |
|                    | yx + x = 1                                                                                                    |            |
|                    | $y = \frac{1 - x}{x} \qquad \text{or } \frac{1}{x} - 1$                                                       | M1 A1      |
|                    | $\mathbf{f}^{-1}(x) = \frac{1-x}{x}$                                                                          |            |
|                    | Domain of $f^{-1}$ is $\left(0, \frac{1}{4}\right)$                                                           | B1 ft (3)  |
| (d)                | $fg(x) = \frac{1}{2x^2 - 3 + 1}$                                                                              |            |
|                    | $\frac{1}{2x^2 - 2} = \frac{1}{8}$                                                                            | M1         |
|                    | $x^2 = 5$                                                                                                     | A1         |
|                    | $x = \pm \sqrt{5}$ both                                                                                       | A1 (3)     |
|                    |                                                                                                               | (12 marks) |



| Question<br>Number | Scheme                                                                                                                          | Marks       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|
| (a)                | $\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)} \text{ so } 2 \equiv A(2+y) + B(2-y)$     | M1          |
|                    | Let $y = -2$ , $2 = B(4) \implies B = \frac{1}{2}$ , Let $y = 2$ , $2 = A(4) \implies A = \frac{1}{2}$                          | M1          |
|                    | giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$                                                                  | A1 cao (3)  |
| (b)                | $\int \frac{2}{4 - y^2}  \mathrm{d}y = \int \frac{1}{\cot x}  \mathrm{d}x$                                                      | B1          |
|                    | $\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}  \mathrm{d}y = \int \tan x  \mathrm{d}x$                            |             |
|                    | $\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$                                                     | B1 M1 A1 ft |
|                    | $y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 2 = \ln \left( \frac{1}{\cos(\frac{x}{3})} \right) + c$ | M1          |
|                    | $\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$                                                                  |             |
|                    | $-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$                                                              |             |
|                    | $\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$                                                 | M1          |
|                    | $ \ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right) $                                                         |             |
|                    | $ \ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2 $                                                        | M1          |
|                    | $\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$                                                                                          |             |
|                    | Hence, $\sec^2 x = \frac{8+4y}{2-y}$                                                                                            | A1 (8)      |
|                    |                                                                                                                                 | (11 marks)  |



| Question<br>Number | Scheme                                                                                                          | Marks     |
|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------|
| (a)                |                                                                                                                 | M1        |
|                    | 0.08 (or 0.09), —0.3 One +ve, one -ve or sign change, ∴ root                                                    | A1 (2)    |
| (b)                | $f'(x) = -4\sin x - e^{-x}$                                                                                     | B1        |
|                    | $f'(x) = -4\sin x - e^{-x}$ $1.6 - \frac{f(1.6)}{f'(1.6)}$                                                      | M1        |
|                    | $= 1.6 - \frac{4\cos 1.6 + e^{-1.6}}{(-4\sin 1.6 - e^{-1.6})} \qquad \left( = 1.6 - \frac{0.085}{-4.2} \right)$ | A1        |
|                    |                                                                                                                 | A1 (4)    |
|                    |                                                                                                                 | (6 marks) |

| Question<br>Number | Scheme                                                                                                                                                                     | Marks        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (a)(i)             | $\frac{\mathrm{d}}{\mathrm{d}x} \left( e^{3x} \left( \sin x + 2\cos x \right) \right) = 3 e^{3x} \left( \sin x + 2\cos x \right) + e^{3x} \left( \cos x - 2\sin x \right)$ | M1 A1 A1 (3) |
|                    | $\left(=e^{3x}\left(\sin x+7\cos x\right)\right)$                                                                                                                          |              |
| (ii)               | $\frac{d}{dx}(x^3 \ln(5x+2)) = 3x^2 \ln(5x+2) + \frac{5x^3}{5x+2}$                                                                                                         | M1 A1 A1 (3) |
| (b)                | $\frac{dy}{dx} = \frac{(x+1)^2 (6x+6) - 2(x+1)(3x^2 + 6x - 7)}{(x+1)^4}$                                                                                                   | M1 A1        |
|                    | $=\frac{(x+1)(6x^2+12x+6-6x^2-12x+14)}{(x+1)^4}$                                                                                                                           | M1           |
|                    | $=\frac{20}{\left(x+1\right)^3}  \bigstar$                                                                                                                                 | A1 cso (5)   |
| (c)                | $= \frac{1}{(x+1)^3} $ $\frac{d^2 y}{dx^2} = -\frac{60}{(x+1)^4} = -\frac{15}{4}$ $(x+1)^4 = 16$ $x = 1, -3$ both                                                          | M1           |
|                    | $\left(x+1\right)^4 = 16$                                                                                                                                                  | M1           |
|                    | x = 1, -3 both                                                                                                                                                             | A1 (3)       |
|                    |                                                                                                                                                                            | (14 marks)   |



| Question<br>Number | Scheme                                                                                                                                                                                | Marks      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a)                | From question, $\frac{dA}{dt} = 0.032$                                                                                                                                                | B1         |
|                    | $\left\{ A = \pi x^2 \implies \frac{\mathrm{d}A}{\mathrm{d}x} = \right\} 2\pi x$                                                                                                      | B1         |
|                    | $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032) \frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$           | M1         |
|                    | When $x = 2 \mathrm{cm}$ , $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{0.016}{2 \pi}$                                                                                                    |            |
|                    | Hence, $\frac{dx}{dt} = 0.002546479 \text{ (cm s}^{-1}\text{)}$                                                                                                                       | A1 cso (4) |
| (b)                | $V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$                                                                                                                                  | B1         |
|                    | $\frac{\mathrm{d}V}{\mathrm{d}x} = 15\pix^2$                                                                                                                                          | B1 ft      |
|                    | $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24x\right\}$ | M1         |
|                    | When $x = 2 \text{ cm}$ , $\frac{dV}{dt} = 0.24(2) = \underline{0.48} \text{ (cm}^3 \text{ s}^{-1}\text{)}$                                                                           | A1 (4)     |
|                    |                                                                                                                                                                                       | (8 marks)  |



| Question<br>Number | Scheme                                                                                                                                                                       | Marks      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a)                |                                                                                                                                                                              |            |
|                    | $\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times \right\}  \underline{6x - 2y \frac{dy}{dx}} + \left(\underline{y + x \frac{dy}{dx}}\right) = \underline{0}$ | M1 B1 A1   |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$                                                                                | M1         |
|                    | giving $-18x - 3y = 8x - 16y$                                                                                                                                                |            |
|                    | giving $13y = 26x$                                                                                                                                                           | M1         |
|                    | Hence, $y = 2x \Rightarrow y - 2x = 0$                                                                                                                                       | A1 cso (6) |
| (b)                | At $P \& Q$ , $y = 2x$ . Substituting into eqn *                                                                                                                             |            |
|                    | gives $3x^2 - (2x)^2 + x(2x) = 4$                                                                                                                                            | M1         |
|                    | Simplifying gives, $x^2 = 4 \Rightarrow \underline{x = \pm 2}$                                                                                                               | A1         |
|                    | $y = 2x \implies y = \pm 4$ , hence coordinates are $(2,4)$ and $(-2,-4)$                                                                                                    | A1 (3)     |
|                    |                                                                                                                                                                              | (9 marks)  |

| Question<br>Number | Scheme                                                                                                                                                           | Marks     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (a)                | $\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$ $\int xe^x dx = xe^x - \int e^x .1 dx$                      |           |
|                    | $\int x e^x dx = x e^x - \int e^x .1 dx$                                                                                                                         | M1 A1     |
|                    | $= x e^x - \int e^x dx$                                                                                                                                          |           |
|                    | $= xe^{x} - e^{x} (+ c)$ $(u - x^{2} \implies du - 2x)$                                                                                                          | A1 (3)    |
| (b)                | $\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x & \Rightarrow v = e^x \end{cases}$ $\int x^2 e^x dx = x^2 e^x - \int e^x . 2x dx$ |           |
|                    | $\int x^2 e^x dx = x^2 e^x - \int e^x . 2x dx$                                                                                                                   | M1 A1     |
|                    | $= x^2 e^x - 2 \int x e^x dx$                                                                                                                                    |           |
|                    | $= x^2 e^x - 2(x e^x - e^x) + c$                                                                                                                                 | A1 (3)    |
|                    |                                                                                                                                                                  | (6 marks) |



| Question<br>Number | Scheme                                                                                                                                 | Marks      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a)                | $\sin^2\theta + \cos^2\theta = 1$                                                                                                      |            |
|                    | $\div \sin^2 \theta \qquad \qquad \frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$ | M1         |
|                    | $1 + \cot^2 \theta = \csc^2 \theta +$                                                                                                  | A1 cso (2) |
| (b)                | $1 + \cot^2 \theta = \csc^2 \theta + 2(\csc^2 \theta - 1) - 9 \csc \theta = 3$                                                         | M1         |
|                    | $2\csc^2\theta - 9\csc\theta - 5 = 0 \qquad or \qquad 5\sin^2\theta + 9\sin\theta - 2 = 0$                                             | M1         |
|                    | $(2 \csc \theta + 1)(\csc \theta - 5) = 0$ or $(5 \sin \theta - 1)(\sin \theta + 2) = 0$                                               | M1         |
|                    | $\csc \theta = 5$ or $\sin \theta = \frac{1}{5}$                                                                                       | A1         |
|                    | θ=11.5°,168.5°                                                                                                                         | A1 A1 (6)  |
|                    |                                                                                                                                        | (8 marks)  |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a)                | At $P(4, 2\sqrt{3})$ either $4 = 8\cos t$ or $2\sqrt{3} = 4\sin 2t$                                                                                                                                                                                                                                                                                                                                                                                                       | M1         |
|                    | $\Rightarrow$ only solution is $t = \frac{\pi}{3}$ where 0,, $t$ ,, $\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                       | A1         |
| (b)                | $x = 8\cos t, \qquad y = 4\sin 2t$                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                    | $\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t ,  \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$                                                                                                                                                                                                                                                                                                                                                                                | M1 A1      |
|                    | At $P$ , $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$                                                                                                                                                                                                                                                                                                                                                    | M1         |
|                    | $\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$                                                                                                                                                                                                                                                                                                                           |            |
|                    | Hence $m(N) = -\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{5}}}$                                                                                                                                                                                                                                                                                                                                                                                                               | М1         |
|                    | N: $y-2\sqrt{3}=-\sqrt{3}(x-4)$                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1         |
|                    | N: $y = -\sqrt{3}x + 6\sqrt{3}$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 cso (6) |
| (c)                | $A = \int_{0}^{4} y  dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4\sin 2t \cdot (-8\sin t)  dt$                                                                                                                                                                                                                                                                                                                                                                             | M1 A1      |
|                    | $A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t \cdot \sin t  dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) \cdot \sin t  dt$                                                                                                                                                                                                                                                                                                                        | M1         |
|                    | $A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -64 \cdot \sin^2 t \cos t  dt$                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|                    | $A = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64.\sin^2 t \cos t  dt  (*)$                                                                                                                                                                                                                                                                                                                                                                                                    | A1 (4)     |
| (d)                | $A = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} 64 \cdot \sin^2 t \cos t  dt  (*)$ $A = 64 \left[ \frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}  \text{or}  A = 64 \left[ \frac{u^3}{3} \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ $A = 64 \left[ \frac{1}{3} - \left( \frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$ $A = 64 \left( \frac{1}{3} - \frac{1}{8} \sqrt{3} \right) = \frac{64}{3} - 8\sqrt{3}$ | M1 A1      |
|                    | $A = 64 \left[ \frac{1}{3} - \left( \frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$                                                                                                                                                                                                                                                                                                                               | М1         |
|                    | $A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                         | A1 (4)     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (16 marks) |