Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M8

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 10 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

Sue is training for a marathon. Her training includes a run every Saturday starting with a run of 5 km on the first Saturday. Each Saturday she increases the length of her run from the previous Saturday by 2 km .
(a) Show that on the 4th Saturday of training she runs 11 km .
(b) Find an expression, in terms of n, for the length of her training run on the nth Saturday.
(c) Show that the total distance she runs on Saturdays in n weeks of training is $n(n+4) \mathrm{km}$.

On the nth Saturday Sue runs 43 km .
(d) Find the value of n.
(e) Find the total distance, in km, Sue runs on Saturdays in n weeks of training.

Question 2

The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{2(x-1)}{x^{2}-2 x-3}-\frac{1}{x-3}, x>3
$$

(a) Show that $\mathrm{f}(x)=\frac{1}{x+1}, x>3$.
(b) Find the range of f.
(c) Find $\mathrm{f}^{-1}(x)$. State the domain of this inverse function.

The function g is defined by

$$
\mathrm{g}: x \mapsto 2 x^{2}-3, \quad x \in \mathbb{R}
$$

(d) Solve $f g(x)=\frac{1}{8}$.

Question 3

(a) Express $\frac{2}{4-y^{2}}$ in partial fractions.
(b) Hence obtain the solution of

$$
2 \cot x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(4-y^{2}\right)
$$

for which $y=0$ at $x=\frac{\pi}{3}$, giving your answer in the form $\sec ^{2} x=g(y)$.

Question 4

$$
\begin{equation*}
f(x)=4 \cos x+e^{-x} \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.6 and 1.7
(b) Taking 1.6 as your first approximation to α, apply the Newton-Raphson procedure once to $f(x)$ to obtain a second approximation to α. Give your answer to 3 significant figures.

Question 5

(a) Differentiate with respect to x,
(i) $\mathrm{e}^{3 x}(\sin x+2 \cos x)$,
(ii) $x^{3} \ln (5 x+2)$.

Given that $y=\frac{3 x^{2}+6 x-7}{(x+1)^{2}}, x \neq 1$,
(b) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{20}{(x+1)^{3}}$.
(c) Hence find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$ and the real values of x for which $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{15}{4}$.

Question 6

Figure 2
Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is $x \mathrm{~cm}$ and the length of the rod is $5 x \mathrm{~cm}$.

The cross-sectional area of the rod is increasing at the constant rate of $0.032 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
(a) Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when the radius of the rod is 2 cm , giving your answer to 3 significant figures.
(b) Find the rate of increase of the volume of the rod when $x=2$.

Question 7

A curve has equation $3 x^{2}-y^{2}+x y=4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q .
(a) Use implicit differentiation to show that $y-2 x=0$ at P and at Q.
(b) Find the coordinates of P and Q.

Question 8

(a) Use integration by parts to find $\int x \mathrm{e}^{x} \mathrm{~d} x$.
(b) Hence find $\int x^{2} \mathrm{e}^{x} \mathrm{~d} x$.

Question 9

(a) Given that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that $1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta$
(b) Solve, for $0 \leq \theta<180^{\circ}$, the equation

$$
2 \cot ^{2} \theta-9 \operatorname{cosec} \theta=3,
$$

giving your answers to 1 decimal place.

Question 10

Figure 3
Figure 3 shows the curve C with parametric equations

$$
x=8 \cos t, \quad y=4 \sin 2 t, \quad 0 \leq t \leq \frac{\pi}{2} .
$$

The point P lies on C and has coordinates $(4,2 \sqrt{ } 3)$.
(a) Find the value of t at the point P.

The line $/$ is a normal to C at P.
(b) Show that an equation for / is $y=-x \sqrt{ } 3+6 \sqrt{ } 3$.

The finite region R is enclosed by the curve C, the x-axis and the line $x=4$, as shown shaded in Figure 3 .
(c) Show that the area of R is given by the integral $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64 \sin ^{2} t \cos t \mathrm{~d} t$.
(d) Use this integral to find the area of R, giving your answer in the form $a+b \sqrt{3}$, where a and b are constants to be determined.

