Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M9

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
a_{1} & =k \\
a_{n+1} & =2 a_{n}-7, \quad n \geqslant 1
\end{aligned}
$$

where k is a constant.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=4 k-21$.

Given that $\sum_{r=1}^{4} a_{r}=43$,
(c) find the value of k.

Question 2

The function g is defined by

$$
\mathrm{g}(x)=\frac{\mathrm{e}^{x}-3}{\mathrm{e}^{x}-2}, \quad x \in \mathbb{R}, x \neq \ln 2
$$

(a) Differentiate $\mathrm{g}(x)$ to show that $\mathrm{g}^{\prime}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}$
(b) Find the exact values of x for which $g^{\prime}(x)=1$

Question 3

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$. The curve meets the coordinate axes at the points $A(0,1-k)$ and $B\left(\frac{1}{2} \ln k, 0\right)$, where k is a constant and $k>1$, as shown in Figure 2.

On separate diagrams, sketch the curve with equation
(a) $y=|\mathrm{f}(x)|$,
(b) $y=\mathrm{f}^{-1}(x)$.

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $\mathrm{f}(x)=\mathrm{e}^{2 x}-k$,
(c) state the range of f ,
(d) find $\mathrm{f}^{-1}(x)$,
(e) write down the domain of f^{-1}.

Question 4

$$
\mathrm{f}(x)=\frac{4-2 x}{(2 x+1)(x+1)(x+3)}=\frac{A}{2 x+1}+\frac{B}{x+1}+\frac{C}{x+3}
$$

(a) Find the values of the constants A, B and C.
(b) (i) Hence find $\int \mathrm{f}(x) \mathrm{d} x$.
(ii) Find $\int_{0}^{2} \mathrm{f}(x) \mathrm{d} x$ in the form $\ln k$, where k is a constant.

Question 5

Figure 2
Figure 2 shows a sketch of the curve with parametric equations

$$
x=2 \cos 2 t, \quad y=6 \sin t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}
$$

(a) Find the gradient of the curve at the point where $t=\frac{\pi}{3}$.
(b) Find a cartesian equation of the curve in the form

$$
y=\mathrm{f}(x), \quad-k \leqslant x \leqslant k,
$$

stating the value of the constant k.
(c) Write down the range of $\mathrm{f}(x)$.

Question 6

(i) Differentiate with respect to x
(a) $x^{2} \cos 3 x$
(b) $\frac{\ln \left(x^{2}+1\right)}{x^{2}+1}$
(ii) A curve C has the equation

$$
y=\sqrt{ }(4 x+1), \quad x>-\frac{1}{4}, y>0
$$

The point P on the curve has x-coordinate 2. Find an equation of the tangent to C at P in the form ax+ $b y+c=0$, where a, b and c are integers.

Question 7

The curve C has the equation $\mathrm{ye}^{-2 x}=2 x+y^{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P on C has coordinates $(0,1)$.
(b) Find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 8

(a) Find $\int \sqrt{ }(5-x) \mathrm{d} x$.

Figure 3
Figure 3 shows a sketch of the curve with equation

$$
y=(x-1) \sqrt{ }(5-x), \quad 1 \leqslant x \leqslant 5
$$

(b) (i) Using integration by parts, or otherwise, find

$$
\int(x-1) \sqrt{ }(5-x) \mathrm{d} x
$$

(b) (ii) Hence find $\int_{1}^{5}(x-1) \sqrt{ }(5-x) \mathrm{d} x$.

Question 9

(a) Write down $\sin 2 x$ in terms of $\sin x$ and $\cos x$.
(b) Find, for $0<x<\pi$, all the solutions of the equation

$$
\operatorname{cosec} x-8 \cos x=0
$$

giving your answers to 2 decimal places.

Question 10

(a) Use the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ to prove that $\tan ^{2} \theta=\sec ^{2} \theta-1$.
(b) Solve, for $0 \leq \theta<360^{\circ}$, the equation

$$
\begin{equation*}
2 \tan ^{2} \theta+4 \sec \theta+\sec ^{2} \theta=2 \tag{6}
\end{equation*}
$$

(Total 8 marks)

Question 11

(a) Use the identity $\cos (A+B)=\cos A \cos B-\sin A \sin B$, to show that

$$
\begin{equation*}
\cos 2 A=1-2 \sin ^{2} A \tag{2}
\end{equation*}
$$

The curves C_{1} and C_{2} have equations

$$
\begin{aligned}
& C_{1}: y=3 \sin 2 x \\
& C_{2}: y=4 \sin ^{2} x-2 \cos 2 x
\end{aligned}
$$

(b) Show that the x-coordinates of the points where C_{1} and C_{2} intersect satisfy the equation

$$
\begin{equation*}
4 \cos 2 x+3 \sin 2 x=2 \tag{3}
\end{equation*}
$$

(c) Express $4 \cos 2 x+3 \sin 2 x$ in the form $R \cos (2 x-\alpha)$, where $R>0$ and $0<\alpha<90^{\circ}$, giving the value of α to 2 decimal places.
(d) Hence find, for $0 \leq x<180^{\circ}$, all the solutions of

$$
4 \cos 2 x+3 \sin 2 x=2
$$

giving your answers to 1 decimal place.

