

Pure Mathematics 1 Practice Paper J11 MARK SCHEME

Question Number	Scheme	Marks
(a)	(i) correct shape (-ve cubic) Crossing at (-2, 0) Through the origin Crossing at (3,0) (ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1
(b)	"2" solutions Since only "2" intersections	B1ft dB1ft (2) 8
	Notes Notes	
(b)		

	Question Number	Scheme	Marks	
	(a)	(8-3-k=0) so $k=5$	B1	(1)
	(b)	2y = 3x + k	M1	
		$2y = 3x + k$ $y = \frac{3}{2}x + \dots \text{ and so } m = \frac{3}{2} \text{ o.e.}$	A1	
\vdash				(2)
	(c)	Perpendicular gradient = $-\frac{2}{3}$	B1ft	
		Equation of line is: $y-4=-\frac{2}{3}(x-1)$	M1A1ft	
		3y + 2x - 14 = 0 o.e.	A1	(4)
\vdash				(4)
	(d)	$y = 0$, $\Rightarrow B(7,0)$ or $x = 7$ or $-\frac{c}{a}$	M1A1ft	
		•		(2)
	(e)	$AB^2 = (7-1)^2 + (4-0)^2$	M1	
		$AB^2 = (7-1)^2 + (4-0)^2$ $AB = \sqrt{52}$ or $2\sqrt{13}$	A1	
				(2) 11
		<u>Notes</u>		
	(b)	M1 for an attempt to rearrange to $y =$		
\perp	22.00	A1 for clear statement that gradient is 1.5, can be m = 1.5 o.e.		
	(c)	B1ft for using the perpendicular gradient rule correctly on their "1.5"		
		M1 for an attempt at finding the equation of the line through A using their		
		gradient. Allow a sign slip		
		1 st A1ft for a correct equation of the line follow through their changed gradient		
		2 nd A1 as printed or equivalent with integer coefficients – allow		
		$\frac{3y + 2x = 14}{3y + 2x} \text{ or } \frac{3y = 14 - 2x}{3y + 2x}$		
+	(d)	M1 for use of $y = 0$ to find $x =$ in their equation		
		A1ft for $x = 7$ or $-\frac{c}{a}$		
+	(e)	M1 for an attempt to find AB or AB^2		
		A1 for any correct surd form- need not be simplified		

Question Number	Scheme	Marks
	$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$ AG Correct method (no errors) for finding the mid-point of AB giving (3, 6)	D18
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or Order to find the radius order to find the radius formula order to find the radius formula order to find the radius order	in is. M1
		a. AI
	$(x-3)^2 + (y-6)^2 = 50 \left(\text{or} \left(\sqrt{50} \right)^2 \text{ or } \left(5\sqrt{2} \right)^2 \right)$ $(x\pm 3)^2 + (y\pm 6)^2 = 6$ $k \text{ is a positive } \frac{\text{value}}{(x-3)^2 + (y-6)^2} = 50 \text{ (Not } 7.07$	M1
		(4)
(c)	{For $(10, 7)$, } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u>
		(1)
(d)	$\{\text{Gradient of radius}\}=\frac{7-6}{10-3} \text{ or } \frac{1}{7}$ This must be seen in part (constant)	l). B1
	Gradient of tangent = $\frac{-7}{1}$ Using a perpendicular gradient method $y-7=-7(x-10)$ $y-7=(\text{their gradient})(x-10)$	d. M1
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7$	x A1 cao
		[10]
	<u>Notes</u>	
(a)	Alternative method: $C\left(-2 + \frac{8 2}{2}, 11 + \frac{1 - 11}{2}\right)$ or $C\left(8 + \frac{-2 - 8}{2}, 1 + \frac{11 - 1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius ardiameter of the circle to award the first M1. Therefore allow 1st M1 generously for	
	$\frac{(-2-8)^2+(11-1)^2}{2}$	
	Award 1 st M1A1 for $\frac{(-2-8)^2 + (11-1)^2}{4}$ or $\frac{\sqrt{(-2-8)^2 + (11-1)^2}}{2}$.	
	Correct answer in (b) with no working scores full marks.	
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.	
	Also to gain this mark candidates need to have the correct equation of the circle eit part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a c Also a candidate could either substitute $x = 10$ in C to find $y = 7$ or substitute $y = 7$ find $x = 10$.	orrect C.

Question Number	Scheme	Marks		
(d)	Try o (o o o o o o o o o o o o o o o o o	ing c.		
	Note: Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .			
Alternative: For first two marks (differentiation):				
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.			
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must con	tain both		
	x and y. (This M mark can be awarded generously, even if the attempted "differentiation not "implicit".)			
	<u>Alternative</u> : $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to			
	y = -7x + 77.			

(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) \frac{3}{2} x^2 - \frac{27}{2} x^{\frac{1}{2}} - 8x^{-2}$	M1A1A1A1	(4)
(b)	$x = 4 \implies y = \frac{1}{2} \times 64 - 9 \times 2^3 + \frac{8}{4} + 30$	M1	, ,
	= 32 - 72 + 2 + 30 = -8 *	A1cso	(2)
(c)	$x = 4 \implies y' = \frac{3}{2} \times 4^2 - \frac{27}{2} \times 2 - \frac{8}{16}$	M1	
	$= 24 - 27 - \frac{1}{2} = -\frac{7}{2}$	A1	
	Gradient of the normal = $-1 \div \frac{7}{2}$	M1	
	Equation of normal: $y8 = \frac{2}{7}(x - 4)$	M1A1ft	
	7y - 2x + 64 = 0	A1	
			(6) 12
Question Number	Scheme	Marks	
	Notes		
(a)	1 st M1 for an attempt to differentiate $x^n \to x^{n-1}$		
5.47	1 st A1 for one correct term in x		
	2 nd A1 for 2 terms in x correct		
	3^{rd} A1 for all correct x terms. No 30 term and no +c.		
(b)	$\frac{3}{2}$		
, ,	M1 for substituting $x = 4$ into $y =$ and attempting $4^{\overline{2}}$		
(c)	A1 note this is a printed answer 1 st M1 Substitute x = 4 into y' (allow slips)		
(0)	A1 Obtains -3.5 or equivalent		
	2 nd M1 for correct use of the perpendicular gradient rule using their		
	gradient. (May be slip doing the division) Their gradient must		
	have come from y'		
	3^{rd} M1 for an attempt at equation of tangent or normal at P		
	2 nd A1ft for correct use of their changed gradient to find normal at P.		
	Depends on 1 st , 2 nd and 3 rd Ms		
	3 rd A1 for any equivalent form with integer coefficients		

Question Number	Scheme	Mark	s
(a)	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$		
	So, $V = 100x - 40x^2 + 4x^3$ $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$, where α , β , $\gamma \neq 0$	M1	
	So, $V = 100x - 40x^2 + 4x^2$ $V = 100x - 40x^2 + 4x^3$	A1	
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ At least two of their expanded terms differentiated correctly.	М1	
	$100 - 80x + 12x^2$	A1 ca	ao (4)
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) = 0	М1	(•)
	$\{\Rightarrow 4(3x^2 - 20x + 25) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0\}$		
	{As $0 < x < 5$ } $x = \frac{5}{3}$ or $x = \text{awrt } 1.67$	A1	
	$x = \frac{5}{3}$, $V = 4(\frac{5}{3})(5 - \frac{5}{3})^2$ Substitute candidate's value of x where $0 < x < 5$ into a formula for V .	dM1	
	So, $V = \frac{2000}{27} = 74 \frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74 \frac{2}{27}$ or awrt 74.1	A1	
			(4)
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.	M1	
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$		
	$\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V \text{ is a maximum} \qquad \frac{d^2V}{dx^2} = -40 \text{ and } \leq 0 \text{ or negative and } \underline{\text{maximum}}.$	A1 cso	,
		_	(2) (0)
	<u>Notes</u>		
(a)	1 st M1 for a three term cubic in the form $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$.		
	Note that an un-combined $\pm \alpha x \pm \lambda x^2 \pm \mu x^2 \pm \gamma x^3$, α , λ , μ , $\gamma \neq 0$ is fine for the 1 st N	1 1.	
	1^{st} A1 for either $100x - 40x^2 + 4x^3$ or $100x - 20x^2 - 20x^2 + 4x^3$.		
	2 nd M1 for any two of their expanded terms differentiated correctly. NB: If expande expression is divided by a constant, then the 2 nd M1 can be awarded for at least two correct.		e
	Note for un-combined $\pm \lambda x^2 \pm \mu x^2$, $\pm 2\lambda x \pm 2\mu x$ counts as one term differentiated co.	rrectly.	
	2^{nd} A1 for $100 - 80x + 12x^2$, cao .		
	Note: See appendix for those candidates who apply the product rule of differentiation	on.	

Question Number	Scheme	Ma	rks
(a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$ At least two of the three criteria correct. (See notes below.) All three criteria correct. (See notes below.)	B1 B1	
	O X		(2)
(b)	Forming a quadratic {using $y^2 - 4y + 3 = 0$ } $y'' = 7^x$	M1	
	$y^2 - 4y + 3 = 0$	A1	
	$\{(y-3)(y-1)=0 \text{ or } (7^x-3)(7^x-1)=0\}$		
	$y = 3$, $y = 1$ or $7^x = 3$, $7^x = 1$ Both $y = 3$ and $y = 1$.	A1	
	$\{7^x = 3 \Rightarrow\} x \log 7 = \log 3$ or $x = \frac{\log 3}{\log 7}$ or $x = \log_7 3$ A valid method for solving $7^x = k$ where $k > 0, k \ne 1$	dM1	
	x = 0.5645 0.565 or awrt 0.56	A1	
	x = 0 $x = 0$ stated as a solution.	B1	
			(6) [8]
	<u>Notes</u>		
(a)	 B1B0: Any two of the following three criteria below correct. B1B1: All three criteria correct. Criteria number 1: Correct shape of curve for x≥0. 		
	Criteria number 2: Correct shape of curve for $x < 0$.		
	Criteria number 3: (0, 1) stated or 1 marked on the y-axis. Allow (1, 0) rather than (0,		
	marked in the "correct" place on the y-axis.		

Question Number	Scheme	Marks	
(b)	1 st M1 is an attempt to form a quadratic equation {using " y " = 7^x .}		
	1 st A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 = 0$.		
	Can use any variable here, eg: y , x or 7^x . Allow M1A1 for $x^2 - 4x + 3 = 0$.		
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.		
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or	
	$(7^x)^2 - 4(7^x) + 3 = 0.$		
	1 st A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this accuracy	iracy	
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate	:	
	applying logarithms on these.		
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.		
	3^{rd} dM1 for solving $7^x = k$, $k > 0$, $k \ne 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log k$	$_{7}k$.	
	dM1 is dependent upon the award of M1.		
	2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from any working.		

Question Number	Scheme		Ma	rks
(a)	$\theta = 20 + Ae^{-ht} (eqn *)$			
	$\{t = 0, \theta = 90 \Rightarrow\}$ $90 = 20 + Ae^{-k(0)}$	Substitutes $t = 0$ and $\theta = 90$ into eqn *	M1	
	$90 = 20 + A \implies \underline{A = 70}$	<u>A = 70</u>	A1	(2)
(b)	$\theta = 20 + 70e^{-kt}$			
	$\{t = 5, \theta = 55 \Rightarrow\}$ $55 = 20 + 70e^{-k(5)}$ $\frac{35}{70} = e^{-5k}$	Substitutes $t = 5$ and $\theta = 55$ into eqn * and rearranges eqn * to make $e^{\pm 5k}$ the subject.	М1	
	$\ln\left(\frac{35}{70}\right) = -5k$	Takes 'lns' and proceeds to make ' $\pm 5k$ ' the subject.	dM1	
	$-5k = \ln\left(\frac{1}{2}\right)$			
	$-5k = \ln 1 - \ln 2 \implies -5k = -\ln 2 \implies \underline{k = \frac{1}{5}\ln 2}$	Convincing proof that $k = \frac{1}{5} \ln 2$	A1 :	* (3)
(c)	$\theta = 20 + 70e^{-\frac{1}{3}r\ln 2}$			
	$\frac{d\theta}{dt} = -\frac{1}{5} \ln 2.(70) e^{-\frac{1}{3}t \ln 2}$	$\pm \alpha e^{-kt}$ where $k = \frac{1}{5} \ln 2$ -14 \ln 2 e^{-\frac{1}{5}t \ln 2}		e
	When $t = 10$, $\frac{d\theta}{dt} = -14 \ln 2 e^{-2 \ln 2}$			
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{7}{2}\ln 2 = -2.426015132$			
	Rate of decrease of $\theta = 2.426 ^{\circ}C/\min$ (3 dp.)	awrt ± 2.426	A1	(3) [8]

Question	Scheme	Marks			
Number	Servino				
(a)	Seeing -1 and 5. (See note below.)	B1 (1)			
(b)	$(x+1)(x-5) = x^2 - 4x - 5$ or $x^2 - 5x + x - 5$	B1			
(5)		<u>01</u>			
	$\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{ + c \}$ M: $x^3 \to x^{n+1}$ for any one term. 1st A1 at least two out of three terms	M1A1ft A1			
	correctly ft.				
	Substitutes 5 and -1 (or limits from part(a)) into an "integrated"				
	$\left[\frac{x^3}{3} - \frac{4x^2}{2} - 5x\right]_{-1}^5 = (\dots) - (\dots)$ part(a)) into an "integrated function" and subtracts, either way round.	dM1			
	$ \left\{ \begin{array}{l} \left(\frac{125}{3} - \frac{100}{2} - 25 \right) - \left(-\frac{1}{3} - 2 + 5 \right) \end{array} \right. $				
	$=\left(-\frac{100}{3}\right)-\left(\frac{8}{3}\right)=-36$				
	Hence, Area = 36 Final answer must be 36, not -36	A1			
		(6) [7]			
	<u>Notes</u>	[/]			
(a)	B1: for -1 and 5. Note that (-1, 0) and (5, 0) are acceptable for B1. Also allow				
	(0,-1) and $(0,5)$ generously for B1. Note that if a candidate writes down that				
	A:(5,0), $B:(-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted	in the			
	correct position on the x-axis of the graph.				
(b)	B1 for $x^2 - 4x - 5$ or $x^2 - 5x + x - 5$. If you believe that the candidate is applying	the Way 2			
	method then $-x^2 + 4x + 5$ or $-x^2 + 5x - x + 5$ would then be fine for B1.				
	1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the term	ns.			
	Note that $-5 \rightarrow 5x$ is sufficient for M1.				
	1^{st} A1 at least two out of three terms correctly ft from their multiplied out brackets. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+c'.				
	Allow 2^{nd} A1 also for $\frac{x^3}{3} - \frac{5x^2}{2} + \frac{x^2}{2} - 5x$. Note that $-\frac{5x^2}{2} + \frac{x^2}{2}$ only counts as on	e integrated			
	3 6 6 6				
	term for the 1 st A1 mark. Do not allow any extra terms for the 2 nd A1 mark. 2 nd M1: Note that this method mark is dependent upon the award of the first M1 m.	ark in part			
	(b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x = -1$ in part (a).) (
	the candidate has found from part(a)) into an "integrated function" and subtracts, ei	ther way			
	round. 3 rd A1: For a final answer of 36, not -36.				
	Note: An alternative method exists where the candidate states from the outset that				
	Area $(R) = -\int_{-1}^{5} (x^2 - 4x + 5) dx$ is detailed in the Appendix.				
Question Number	Scheme	Marks			
Aliter					
(b) Way 2	$(x+1)(x-5) = \frac{x^2-4x-5}{x^2-5x+x-5}$ or $\frac{x^2-5x+x-5}{x^2-5x+x-5}$ Can be implied by later working.	<u>B1</u>			
way Z	$(x+1)(x-5) = \frac{x^2 - 4x - 5}{3} \text{ or } \frac{x^2 - 5x + x - 5}{2}$ Can be implied by later working. $M: x^n \to x^{n+1} \text{ for any one term.}$ $1^{st} \text{ A1 any two out of three terms}$ correctly ft. Substitutes 5 and -1 (or limits	M1A1ft A1			
	Substitutes 5 and -1 (or limits				
	$\left[-\frac{x^3}{3} + \frac{4x^2}{2} + 5x\right]_{-1}^5 = (\dots) - (\dots)$ Substitutes 5 and -1 (of limits from part(a)) into an "integrated function" and subtracts, extend	dM1			
	(125 100 25) (1 2 5)] way round.				
	$\begin{cases} \left(-\frac{125}{3} + \frac{100}{2} + 25 \right) - \left(\frac{1}{3} + 2 - 5 \right) \\ = \left(\frac{100}{3} \right) - \left(-\frac{8}{3} \right) \end{cases}$				
	Hence, Area = 36	A1 (6)			
		(6)			

Question	Scheme	Marks		
Number				
(a)	$3\sin^2 x + 7\sin x = \cos^2 x - 4$; $0 \le x < 360^\circ$			
(a)	$3\sin^2 x + 7\sin x = (1 - \sin^2 x) - 4$	M1		
	$4\sin^2 x + 7\sin x + 3 = 0 \mathbf{AG}$	A1 * cso		
	$4\sin^2 x + 7\sin x + 3 = 0$ AG	(2)		
4.5	Valid attempt at factorisation	, ,		
(D)	$(4\sin x + 3)(\sin x + 1) = 0$ and $\sin x =$	M1		
	$\sin x = -\frac{3}{4}$, $\sin x = -1$ Both $\sin x = -\frac{3}{4}$ and $\sin x = -1$.	A1		
	$(\alpha = 48.59)$			
	$x = 180 + 48.59$ or $x = 360 - 48.59$ Either $(180 + \alpha)$ or $(360 - \alpha)$ x = 228.59, $x = 311.41$ Both awrt 228.6 and awrt 311.4 $\{\sin x = -1\} \Rightarrow x = 270$	dM1		
	x = 228.59, $x = 311.41$ Both awrt 228.6 and awrt 311.4	A1		
	$\{\sin x = -1\} \implies x = 270 \tag{270}$			
		(5)		
		[7]		
(a)	Notes M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$).			
(4)				
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores M0.			
	A1 for obtaining the printed answer without error (except for implied use of zero.), the equation at the end of the proof must be $= 0$. Solution just written only as above	_		
	score M1A1.	c would		
(b)	1 st M1 for a valid attempt at factorisation, can use any variable here, s, y, x or $\sin x$,	and an		
	attempt to find at least one of the solutions.			
	Alternatively, using a correct formula for solving the quadratic. Either the formula i	nust be		
	stated correctly or the correct form must be implied by the substitution. 1st A1 for the two correct values of sin x. If they have used a substitution, a correct	value of		
	their s or their y or their x.	value of		
	2^{nd} M1 for solving $\sin x = -k$, $0 < k < 1$ and realising a solution is either of the form	ı		
	$(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$. Note that you cannot access this man			
	$\sin x = -1 \Rightarrow x = 270$. Note that this mark is dependent upon the 1 st M1 mark awards	ed.		
	2 nd A1 for both awrt 228.6 and awrt 311.4			
	B1 for 270.			
	If there are any EXTRA solutions inside the range $0 \le x < 360^{\circ}$ and the candidate we			
	otherwise score FULL MARKS then withhold the final bA2 mark (the fourth mark in	n this part		
	of the question). Also ignore EXTRA solutions outside the range $0 \le x < 360^{\circ}$.			
	Working in Radians: Note the answers in radians are $x = 3.9896, 5.4351, 4.712$	3		
	If a candidate works in radians then mark part (b) as above awarding the 2 nd A1 for			
	4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$. If the candidate would then score FU			
	MARKS then withhold the final bA2 mark (the fourth mark in this part of the questi	on.)		
	No working: Award B1 for 270 seen without any working.			
	Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working.			
	Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any working.			

Question Number	Scheme	Marks	
(a)	Correct shape with a single crossing of each axis $y = 1$ $y = 1$ $y = 1$ $y = 3$ $x = 3$ labelled or stated	B1 B1 B1	3)
(b)	Horizontal translation so crosses the x-axis at (1, 0) New equation is $(y =) \frac{x \pm 1}{(x \pm 1) - 2}$ When $x = 0$ $y =$ $= \frac{1}{3}$	B1 M1 M1 A1	4)
	Notes		7
(b)	B1 for point (1,0) identified - this may be marked on the sketch as 1 on x axis. Accept $x = 1$. 1 st M1 for attempt at new equation and either numerator or denominator correct 2 nd M1 for setting $x = 0$ in their new equation and solving as far as $y =$ A1 for $\frac{1}{3}$ or exact equivalent. Must see $y = \frac{1}{3}$ or $(0, \frac{1}{3})$ or point marked on y-axis. Alternative $f(-1) = \frac{-1}{-1-2} = \frac{1}{3}$ scores M1M1A0 unless $x = 0$ is seen or they write the		
	point as $(0, \frac{1}{3})$ or give $y = 1/3$ Answers only: $x = 1$, $y = 1/3$ is full marks as is $(1,0)(0, 1/3)$ Just 1 and 1/3 is B0 M1 M1 A0 Special case: Translates 1 unit to left (a) B0, B1, B0 (b) Mark (b) as before May score B0 M1 M1 A0 so 3/7 or may ignore sketch and start again scoring full marks for this part.		

(i) 50% of 25 000 is 12 500 and the population [in 2005] is 12 000 [so	B1	or 12 000 is 48% of 25 000 so less than 50% [so consistent]	
consistent]			
(ii) $\log_{10} P = \log_{10} a - kt$ or	B2	condone omission of base; M1 for	
$\log_{10} \frac{\mathbf{f}}{\mathbf{a}} = -kt \text{ o.e. www}$		$\log_{10} P = \log_{10} a + \log_{10} 10^{-kt} $ or better www	
(iii) 4.27, 4.21, 4.13, 4.08	B1	accept 4.273, 4.2108, 4.130, 4.079 rounded to 2 or more dp	
plots	B1	1 mm tolerance	f.t. if at least two calculated values correct
ruled line of best fit drawn	B1	ft their values if at least 4 correct values	must have at least one point on or above and at least
raica inic or oest in diawn		are correctly plotted	one point on or below the line and must cover
		are correctly protect	$0 \le t \le 25$
(iv) $a = 25000$ to 25400	B1	allow 10 ^{4.4}	M1 for a correct first step in solving a pair of valid
(,			equations in either form
$0.01 \le k \le 0.014$	B2	Δŷř	A1 for <i>k</i>
		M1 for $-k = \overline{\Delta x}$ using values from table	A1 for <i>a</i>
$P = a \times 10^{-kt}$ or $P = 10^{\log a - kt}$ with		or graph; condone $+k$	$\mathbf{A1} \text{ for } P = a \times 10^{-kt}$
values in acceptable ranges	B1		
		B0 if left in logarithmic form	
(v) $P = a \times 10^{-35k}$	M1	T heir a and k	allow $\log P = \log a - 35k$
8600 to 9000	A1		
comparing their value with 9375 o.e.	A1	f.t.	
and reaching the correct conclusion	Ai	1.11	
for their value			