Pure Mathematics 1 Practice Paper M11 MARK SCHEME | Question
Number | Scheme | Marks | |--------------------|--|---------------------| | (a) | Discriminant: $b^2 - 4ac = (k+3)^2 - 4k$ or equivalent | M1 A1 | | (b) | $(k+3)^2 - 4k = k^2 + 2k + 9 = (k+1)^2 + 8$ | (2)
M1 A1
(2) | | (c) | For real roots, $b^2 - 4ac \ge 0$ or $b^2 - 4ac > 0$ or $(k+1)^2 + 8 > 0$ $(k+1)^2 \ge 0$ for all k , so $b^2 - 4ac > 0$, so roots are real for all k (or equiv.) | M1
A1 eso (2) | | | Notes (a) M1: attempt to find discriminant – substitution is required If formula $b^2 - 4ac$ is seen at least 2 of a , b and c must be correct If formula $b^2 - 4ac$ is not seen all 3 of a , b and c must be correct Use of $b^2 + 4ac$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^2 + 8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^2 \ge 0$ and conclusion. We will allow $(k+1)^2 > 0$ (or word positive) also allow $b^2 - 4ac \ge 0$ | | | Question
Number | Scheme | | Marks | |--------------------|---|---|-------------------------| | (a) | $f(x)=2x^3 - 7x^2 - 5x + 4$ Remainder = f(1) = 2 - 7 - 5 + 4 = -6 = -6 | Attempts $f(1)$ or $f(-1)$. | M1
A1 [2] | | (b) | $f(-1) = 2(-1)^3 - 7(-1)^2 - 5(-1) + 4$
and so $(x + 1)$ is a factor. | Attempts $f(-1)$.
f(-1) = 0 with no sign or substitution
errors and for conclusion. | M1
A1 [2] | | (c) | $f(x) = \{(x+1)\}(2x^2 - 9x + 4)$ $= (x+1)(2x-1)(x-4)$ (Note: Ignore the ePEN notation of (b) (should be (c)) | | M1 A1
dM1 A1 | | (a) | M1 for attempting either $f(1)$ or $f(-1)$. Can be implied. Only one slip permitted. M1 can also be given for an attempt (at least two "subtracting" processes) at long division to give a remainder which is independent of x . A1 can be given also for -6 seen at the bottom of long division working. Award A0 for a candidate who finds -6 but then states that the remainder is 6 . Award M1A1 for -6 without any working. | | | | (b) | M1: attempting only $f(-1)$. A1: must correctly show $f(-1) = 0$ and give a conclusion in part (b) only Note: Stating "hence factor" or "it is a factor" or a "tick" or "QED" is fine for the conclusion. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-1) = 0$, $(x + 1)$ is a factor" | | | | (c) | Note: Long division scores no marks in part (b). 1^{st} M1: Attempts long division or other method, to of Working need not be seen as this could be done "by it only. Award 1^{st} M0 if the quadratic factor is clearly for candidates use their $(2x^2 - 5x - 10)$ in part (c) found if 1^{st} A1: For seeing $(2x^2 - 9x + 4)$. 2^{nd} dM1: Factorises a 3 term quadratic. (see rule for | otain $(2x^2 \pm ax \pm b)$, $a \neq 0$, even with a remarkable remarkable at a potential $(2x^2 \pm ax \pm b)$ must be seen in a count from dividing $f(x)$ by $(x-1)$. Eg. So from applying a long division method in part | part (c)
ome
(a). | | | previous method mark being awarded. This mark car quadratic formula correctly. 2^{nd} A1: is cao and needs all three factors on one line. quadratic equation.) Note: Some candidates will go from $\{(x+1)\}(2x^2-1)$ | also be awarded if the candidate applies the
Ignore following work (such as a solution t | o a | | | factors. Award these responses M1A1M1A0. Alternative: 1 st M1: For finding either $f(4) = 0$ or 1 st A1: A second correct factor of usually $(x - 4)$ or factors found would imply the 1 st M1 mark. 2 nd dM1: For using two known factors to find the thin 2 nd A1 for correct answer of $(x + 1)(2x - 1)(x - 4)$. | $f\left(\frac{1}{2}\right) = 0.$ (2x - 1) found. Note that any one of the other | | | | Alternative: (for the first two marks) 1^{st} M1: Expands $(x + 1)(2x^2 + ax + b)$ {giving $2x^3$ coefficients to find values for a and b . Not dealing with a factor of 2: $(x + 1)(x - \frac{1}{2})(x - 4)$ | a = -9, b = 4 | Δ0 | | | Answer only, with one sign error: eg. $(x + 1)(x - \frac{1}{2})(x + 4)$
M1A1M1A0. (c) Award M1A1M1A1 for Listing | -1)(x-4) or $(x+1)(2x-1)(x+4)$ scores | | | Question
Number | Scheme | Marks | | | |--------------------|---|--------------------|--|--| | | $x^2 + y^2 + 4x - 2y - 11 = 0$ | | | | | (a) | $\left\{ (x+2)^2 - 4 + (y-1)^2 - 1 - 11 = 0 \right\}$ (±2, ±1), see notes. | M1 | | | | | Centre is $(-2, 1)$. $(-2, 1)$. | A1 cao [2] | | | | (b) | $(x+2)^2 + (y-1)^2 = 11+1+4$ $r = \sqrt{11 \pm "1" \pm "4"}$ | M1 | | | | | So $r = \sqrt{11 + 1 + 4} \implies r = 4$ 4 or $\sqrt{16}$ (Award A0 for ± 4). | A1
[2] | | | | (c) | When $x = 0$, $y^2 - 2y - 11 = 0$ Putting $x = 0$ in C or their C . | M1 | | | | (c) | $y^2 - 2y - 11 = 0$ or $(y - 1)^2 = 12$, etc | A1 aef | | | | | $y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ Attempt to use formula or a method of completing the square in order to find $y = \dots$ | M1 | | | | | | A1 cao cso | | | | | So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$ | | | | | | | [4] | | | | | Note: Please mark parts (a) and (b) together. Answers only in (a) and/or (b) get full mar | ks. | | | | (-) | Note in part (a) the marks are now M1A1 and not B1B1 as on ePEN. | _ | | | | (a) | M1: for $(\pm 2, \pm 1)$. Otherwise, M1 for an attempt to complete the square eg. $(x \pm 2)^2 \pm \alpha$, α | | | | | | $(y \pm 1)^2 \pm \beta$, $\beta \neq 0$. M1A1: Correct answer of $(-2, 1)$ stated from any working gets M1A1 | l. | | | | (b) | M1: to find the radius using 11, "1" and "4", ie. $r = \sqrt{11 \pm "1" \pm "4"}$. By applying this method candidates | | | | | | will usually achieve $\sqrt{16}$, $\sqrt{6}$, $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14. | | | | | | Note: $(x+2)^2 + (y-1)^2 = -11 - 5 = -16 \Rightarrow r = \sqrt{16} = 4$ should be awarded M0A0. | | | | | | Alternative: M1 in part (a): For comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down | centre | | | | | $(-g, -f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r = \sqrt{g^2}$ | $+ f^2 - c$ | | | | | Condone sign errors for this method mark. | , | | | | | $(x+2)^2 + (y-1)^2 = 16 \Rightarrow r = 8$ scores M0A0, but $r = \sqrt{16} = 8$ scores M1A1 isw. | | | | | (c) | 1 st M1: Putting $x = 0$ in either $x^2 + y^2 + 4x - 2y - 11 = 0$ or their circle equation usually given | en in part (a) o | | | | | part (b). 1th A1 for a correct equation in y in any form which can be implied by later working | - | | | | | 2^{nd} M1: See rules for using the formula. Or completing the square on a 3TQ to give $y = a \pm x$ | | | | | | \sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$. This mark should not be given for an attempt to factorise | | | | | | 2^{nd} A1: Need exact pair in simplified surd form of $\{y = \}$ $1 \pm 2\sqrt{3}$. This mark is also cso. | | | | | | Do not need to see $(0, 1 + 2\sqrt{3})$ and $(0, 1 - 2\sqrt{3})$. Allow 2^{nd} A1 for bod $(1 + 2\sqrt{3}, 0)$ and $(1 - 2\sqrt{3})$. | $-2\sqrt{3},0$). | | | | | Any incorrect working in (c) gets penalised the final accuracy mark. So, beware: incorrect | | | | | | $(x-2)^2 + (y-1)^2 = 16$ leading to $y^2 - 2y - 11 = 0$ and then $y = 1 \pm 2\sqrt{3}$ scores M1A1M1. | | | | | | Special Case for setting $y = 0$: Award SC: M0A0M1A0 for an attempt at applying the formula Award SC: M0A0M1A0 for compare to their equation in x which | pleting the | | | | | $x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \right\} $ square to their equation in x which be $x^2 + 4x - 11 = 0$ to give $a \pm \sqrt{b}$ is a surd, $b \neq 0$ their 11 and $b = 0$ | \sqrt{b} , where | | | | | | | | | | | Special Case: For a candidate not using \pm but achieving one of the correct answers then awar SC: M1A1M1A0 for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{3}$ | | | | | | Sc. MIAI MIAO for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{3}$ | V12. | | | | Question
Number | Scheme | Marks | |--------------------|---|--------------------------| | (a) | $\{V = \} \ 2x^2y = 81$ $2x^2y = 81$ | B1 oe | | | $\{L = 2(2x + x + 2x + x) + 4y \Rightarrow L = 12x + 4y\}$ $y = \frac{81}{2x^2} \Rightarrow L = 12x + 4\left(\frac{81}{2x^2}\right)$ Making y the subject of their expression and substitute this into the correct L formula. | M1 | | | So, $L = 12x + \frac{162}{x^2}$ AG Correct solution only. AG. | A1 cso | | (b) | $\frac{dL}{dx} = 12 - \frac{324}{x^3} = 12 - 324x^{-3}$ Either $12x \to 12$ or $\frac{162}{x^2} \to \frac{\pm \lambda}{x^3}$ | M1 | | | Correct differentiation (need not be simplified). $L' = 0 \text{ and "their } x^3 = \pm \text{ value"}$ $\left\{ \frac{dL}{dx} = \right\} 12 - \frac{324}{x^3} = 0 \implies x^3 = \frac{324}{12}; = 27 \implies x = 3 \qquad \text{or "their } x^{-3} = \pm \text{ value"}$ | A1 aef
M1; | | | $x = \sqrt[3]{27} \text{ or } x = 3$ $\{x = 3,\} L = 12(3) + \frac{162}{3^2} = 54 \text{ (cm)}$ Substitute candidate's value of $x \neq 0 \text{ into a formula for } L.$ | A1 cso
ddM1
A1 cao | | | Correct ft L" and considering sign | M1 (a) | | (c) | $\{\text{For } x = 3\}, \ \frac{d^2L}{dx^2} = \frac{972}{x^4} > 0 \implies \text{Minimum}$ $\frac{972}{x^4} \text{ and } > 0 \text{ and conclusion.}$ | A1 [2 | | (a) | B1: For any correct form of $2x^2y = 81$. (may be unsimplified). Note that $2x^3 = 81$ is B0. Or candidates can use any symbol or letter in place of y. | | | (b) | M1: Making y the subject of their formula and substituting this into a correct expression for A1: Correct solution only. Note that the answer is given. Note you can mark parts (b) and (c) together. | | | | 2^{nd} M1: Setting their $\frac{dL}{dx} = 0$ and "candidate's ft <i>correct</i> power of $x = a$ value". The power be consistent with their differentiation. If inequalities are used this mark cannot be gained uncandidate states value of x or L from their x without inequalities. $L' = 0$ can be implied by $12 = \frac{324}{x^3}$. 2^{nd} A1: $x^3 = 27 \Rightarrow x = \pm 3$ scores A0. 2^{nd} A1: can be given for no value of x given but followed through by correct working leading $L = 54$. | etil
g to | | (c) | 3 rd M1: Note that this method mark is dependent upon the two previous method marks being M1: for attempting correct ft second derivative and considering its sign. Also Grant and derivative of 972 (conduct the reinstiffed) and a satisfactory of 200. | | | | A1: Correct second derivative of $\frac{972}{x^4}$ (need not be simplified) and a valid reason (e.g. > 0), conclusion. Need to conclude minimum (allow x and not L is a minimum) or indicate by a tic a minimum. The actual value of the second derivative, if found, can be ignored, although subtheir L and not x into L" is A0. Note: 2 marks can be scored from a wrong value of x, no value found or from not substituting in the value of their x into L". Gradient test or testing values either side of their x scores M0A0 in part (c). | ck that it is | | | Throughout this question allow confused notation such as $\frac{dy}{dx}$ for $\frac{dL}{dx}$. | | | Question
Number | Scheme | Marks | |--------------------|--|---------| | (a) | p=7.5 | B1 (1) | | (b) | $2.5 = 7.5e^{-4k}$ | M1 (1) | | | $e^{-4k} = \frac{1}{3}$ | M1 | | | $-4k = \ln(\frac{1}{3})$ $-4k = -\ln(3)$ | dM1 | | | $-4k = -\ln(3)$ $k = \frac{1}{4}\ln(3)$ | A1* | | | See notes for additional correct solutions and the last A1 | (4) | | (c) | $\frac{dm}{dt} = -kpe^{-kt}$ ft on their p and k | M1A1ft | | | $-\frac{1}{4}\ln 3 \times 7.5e^{-\frac{1}{4}(\ln 3)t} = -0.6\ln 3$ | | | | $e^{-\frac{1}{4}(\ln 3)t} = \frac{2.4}{7.5} = (0.32)$ | M1A1 | | | $-\frac{1}{4}(\ln 3)t = \ln(0.32)$ | dM1 | | | <i>t</i> =4.1486 4.15 or awrt 4.1 | A1 | | | | (6) | | | | 11Marks | | | | | | | | | | | | | | Question
Number | So | cheme | | Marks | |--------------------|---|---|----------|-----------| | (a) | | Shape \int \text{ through (0, 0)} (3, 0) | B1
B1 | | | | | (1.5, -1) | B1 | (3) | | (b) | | | | | | | 279 | Shape | В1 | | | | - | (0, 0) and (6, 0) | В1 | | | | - | (3, 1) | В1 | (3) | | (c) | \ | Shape \bigcup , not through $(0, 0)$ | M1 | | | | | Minimum in 4 th quadrant | A1 | | | | | (-p, 0) and $(6-p, 0)(3-p, -1)$ | B1
B1 | (4) | | | | Notes | | (4)
10 | | | B1: (3,1) shown (c) M1: U shaped parabola not thro A1: Minimum in 4 th quadrant (o B1: Coordinates stated or show B1: Coordinates stated Note: If values are taken for p, then | x axis (3/2, -1) position labelled) and (6,0) stated or 6 labelled o ough origin depends on M mark having been given) | | | | Question | Scheme | М | arks | |----------|---|----------------------|--------| | Number | | | | | (a) | Shape (cubic in this orientation) Touching x-axis at -3 Crossing at -1 on x-axis Intersection at 9 on y-axis | B1
B1
B1 | (4) | | (b) | $y = (x+1)(x^2 + 6x + 9) = x^3 + 7x^2 + 15x + 9$ or equiv. (possibly unsimplified) Differentiates their polynomial correctly – may be unsimplified $\frac{dy}{dx} = 3x^2 + 14x + 15$ (*) | B1
M1
A1 cso | (3) | | (c) | At $x = -5$: $\frac{dy}{dx} = 75 - 70 + 15 = 20$
At $x = -5$: $y = -16$
y - ("-16") = "20"(x - (-5)) or $y = "20x" + c$ with (-5, -"16") used to find $cy = 20x + 84$ | B1
B1
M1
A1 | (3) | | (d) | Parallel: $3x^2 + 14x + 15 = "20"$
(3x-1)(x+5) = 0 $x =x = \frac{1}{3}$ | M1
M1
A1 | (3 | | | Notes (a) Crossing at -3 is B0. Touching at -1 is B0 (b) M: This needs to be correct differentiation here A1: Fully correct simplified answer. (c) M: If the -5 and "-16" are the wrong way round or - omitted the M mark can if a correct formula is seen, (e.g. $y - y_1 = m(x - x_1)$) otherwise M0. m should be numerical and not 0 or infinity and should not have involved reciprocal. (d) 1st M: Putting the derivative expression equal to their value for gradie 2^{nd} M: Attempt to solve quadratic (see notes) This may be implied by answer. | l negative | 1diven | | Question
Number | Scheme | Marks | |--------------------|---|-----------------| | (a) | Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$
{Curve = Line} $\Rightarrow -x^2 + 2x + 24 = x + 4$ Eliminating y correctly.
$x^2 - x - 20$ {= 0} $\Rightarrow (x - 5)(x + 4)$ {= 0} $\Rightarrow x =$ Attempt to solve a resulting | B1
M1 | | | So, $x = 5, -4$ So corresponding y-values are $y = 9$ and $y = 0$. Quadratic to give $x =$ their values. Both $x = 5$ and $x = -4$. See notes below. | A1
B1ft [4] | | (b) | $\left\{ \int (-x^2 + 2x + 24) dx \right\} = \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{3} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{2} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{3} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{3} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{3} + 24x}_{1} \left\{ + \epsilon \right\} $ $= \underbrace{-\frac{x^3}{3} + \frac{2x^2}{3} + 24x}_{1} \left\{ + \epsilon + \frac{x^3}{3} + \frac{x^3}{3} + 2x \right\} $ | M1A1A1 | | | $\left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{5} = () - ()$ Substitutes 5 and -4 (or their limits from part(a)) into an "integrated function" and subtracts, either way round. | dM1 | | | $\left\{ \left(-\frac{125}{3} + 25 + 120 \right) - \left(\frac{64}{3} + 16 - 96 \right) = \left(103 \frac{1}{3} \right) - \left(-58 \frac{2}{3} \right) = 162 \right\}$ | | | | Area of $\Delta = \frac{1}{2}(9)(9) = 40.5$ Uses correct method for finding area of triangle. | M1 | | | So area of R is $162 - 40.5 = 121.5$ Area under curve – Area of triangle. 121.5 | M1
A1 oe cao | | | | 1 | | Scheme | Marks | | |---|---|--| | 1 st B1: For correctly eliminating either x or y . Candidates will usually write $-x^2 + 2x + 24 = x$. This mark can be implied by the resulting quadratic. M1: For solving their quadratic (which must be different to $-x^2 + 2x + 24$) to give $x =$. See | | | | introduction for Method mark for solving a 3TQ. It must result from some attempt to eliminate of the variables. A1: For both $x = 5$ and $x = -4$. | one of | | | y-values. (You may have to get your calculators out if they substitute their x into $y = -x^2 + 2x$ | | | | Note: For $x = 5, -4 \Rightarrow y = 9$ and $y = 0 \Rightarrow \text{eg.} (-4, 9)$ and $(5, 0)$, award B1 isw.
If the candidate gives additional answers to $(-4, 0)$ and $(5, 9)$, then withhold the final B1 mark. | | | | | diagram. | | | Note: Do not give marks for working in part (b) which would be creditable in part (a). | | | | 1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms.
Note that $24 \to 24x$ is sufficient for M1. | | | | 1^{st} A1 at least two out of three terms correctly integrated. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+ c'. 2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b) Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limits the | | | | candidate has found from part(a)) into an "integrated function" and subtracts, either way round. one slip! | Allow | | | 3 rd M1: Area of triangle = $\frac{1}{2}$ (their x_2 – their x_1)(their y_2) or Area of triangle = $\int_{x_1}^{x_2} x + 4 \{dx\}$. | | | | Where x_1 = their -4, x_2 = their 5 and y_2 = their y usually found in part (a).
4 th M1: Area under curve – Area under triangle, where both Area under curve > 0
and Area under triangle > 0 and Area under curve > Area under triangle. | | | | | 1 st B1: For correctly eliminating either x or y . Candidates will usually write $-x^2 + 2x + 24 = x$. This mark can be implied by the resulting quadratic. M1: For solving their quadratic (which must be different to $-x^2 + 2x + 24$) to give $x =$. See introduction for Method mark for solving a 3TQ. It must result from some attempt to eliminate of the variables. A1: For both $x = 5$ and $x = -4$. 2 nd B1ft: For correctly substituting their values of x in equation of line or parabola to give both of y -values. (You may have to get your calculators out if they substitute their x into $y = -x^2 + 2x$. Note: For $x = 5$, $-4 \Rightarrow y = 9$ and $y = 0 \Rightarrow eg. (-4, 9)$ and $(5, 0)$, award B1 isw. If the candidate gives additional answers to $(-4, 0)$ and $(5, 9)$, then withhold the final B1 mark. Special Case: Award SC: B0M0A0B1 for $\{A\}(-4, 0)$. You may see this point marked on the original case. SC: B0M0A0B1 for solving $0 = -x^2 + 2x + 24$ to give $\{A\}(-4, 0)$ and/or $(6, 10)$. Note: Do not give marks for working in part (b) which would be creditable in part (a). 1 st M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms. Note that $24 \to 24x$ is sufficient for M1. 1 st A1 at least two out of three terms correctly integrated. 2 nd M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b) Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. It is an attempt to the substitutes $x = -4$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. It is an attempt to the substitutes $x = -4$ in part (a). (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. It is an attempt to the substitute $x = -4$ in part (a). (or the limits the candidate has found from part | | | Question
Number | Scheme | Marks | |--------------------|---|--------------------------------------| | Aliter (b) Way 2 | Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$ Area of $R = \int_{-4}^{5} (-x^2 + 2x + 24) - (x + 4) dx$ Area of $R = \int_{-4}^{5} (-x^2 + 2x + 24) - (x + 4) dx$ $= -\frac{x^3}{3} + \frac{x^2}{2} + 20x \{+c\}$ $\left[-\frac{x^3}{3} + \frac{x^2}{2} + 20x \right]_{-4}^{5} = () - ()$ And M1: Uses integral of $(x + 4)$ with correct ft limits. $4^{th} M1$: Uses "curve" – "line" function with correct ft limits. M: $x^n \to x^{n+1}$ for any one term. A1 at least two out of three terms Correct answer (Ignore + c). Substitutes 5 and -4 (or their limits from part(a)) into an "integrated function" and subtracts, either way round. | M1
A1ft
A1
dM1 | | | $\left\{ \left(-\frac{125}{3} + \frac{25}{2} + 100 \right) - \left(\frac{64}{3} + 8 - 80 \right) = \left(70 \frac{5}{6} \right) - \left(-50 \frac{2}{3} \right) \right\}$ See above working to decide to award 3 rd M1 mark here: See above working to decide to award 4 th M1 mark here: 121.5 | M1
M1
A1 oe cao | | (b) | 1st M1 for an attempt to integrate meaning that xⁿ → xⁿ⁺¹ for at least one of the terms. Note that 20 → 20x is sufficient for M1. 1st A1 at least two out of three terms correctly ft. Note this accuracy mark is ft in Way 2. 2nd A1 for correct integration only and no follow through. Ignore the use of a '+c'. | 1 | | | Allow 2^{nd} A1 also for $-\frac{x^3}{3} + \frac{2x^2}{2} + 24x - \left(\frac{x^2}{2} + 4x\right)$. Note that $\frac{2x^2}{2} - \frac{x^2}{2}$ or $24x - 4x$ as one integrated term for the 1^{st} A1 mark. Do not allow any extra terms for the 2^{nd} A1 mark 2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark in pa Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limit candidate has found from part(a)) into an "integrated function" and subtracts, either way rou one slip! 3rd M1: Uses the integral of $(x + 4)$ with correct ft limits of their x_1 and their x_2 (usually for | k.
rt (b).
s the
und. Allow | | | (a)) {where $(x_1, y_1) = (-4, 0)$ and $(x_2, y_2) = (5, 9)$.} This mark is usually found in the first candidate's working in part (b). 4^{th} M1: Uses "curve" – "line" function with correct ft (usually found in part (a)) limits. Sub be correct way round. This mark is usually found in the first line of the candidate's working Allow $\int_0^5 (-x^2 + 2x + 24) - x + 4 \{dx\}$ for this method mark. | traction must | | | 3 rd A1: 121.5 oe cao.
Note: SPECIAL CASE for this alternative method
Area of $R = \int_{-4}^{5} (x^2 - x - 20) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 20x \right]_{-4}^{5} = \left(\frac{125}{3} - \frac{25}{2} - 100 \right) - \left(-\frac{64}{3} - 8 + 8 \right)$ | 0) | | | The working so far would score SPEICAL CASE M1A1A1M1M1M0A0. The candidate may then go on to state that $=\left(-70\frac{5}{6}\right)-\left(50\frac{2}{3}\right)=-\frac{243}{2}$ If the candidate then multiplies their answer by -1 then they would gain the 4 th M1 and 121.: the final A1 mark. | 5 would gain | | Question
Number | Scheme | Marks | |--------------------|---|------------------------| | Aliter (a) Way 2 | Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$
{Curve = Line} $\Rightarrow y = -(y - 4)^2 + 2(y - 4) + 24$
$y^2 - 9y = 0$ $\Rightarrow y = -(y - 4)^2 + 2(y - 4) + 24$
Eliminating x correctly. Attempt to solve a resulting quadratic to give $y =$ their values. So, $y = 0, 9$
So corresponding y -values are $x = -4$ and $x = 5$. See notes below. | B1
M1
A1
B1ft | | | 2 nd B1ft: For correctly substituting their values of y in equation of line or parabola to give be x-values. | oth correct ft | | (b) | Alternative Methods for obtaining the M1 mark for use of limits: There are two alternative methods can candidates can apply for finding "162". Alternative 1: $ \int_{-4}^{0} (-x^2 + 2x + 24) dx + \int_{0}^{5} (-x^2 + 2x + 24) dx \\ = \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{0} + \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{0}^{5} \\ = (0) - \left(\frac{64}{3} + 16 - 96 \right) + \left(-\frac{125}{3} + 25 + 120 \right) - (0) \\ = \left(103\frac{1}{3} \right) - \left(-58\frac{2}{3} \right) = 162 $ Alternative 2: $ \int_{-4}^{6} (-x^2 + 2x + 24) dx - \int_{5}^{6} (-x^2 + 2x + 24) dx \\ = \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{6} - \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{5}^{6} \\ = \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(\frac{64}{3} + 16 - 96 \right) \right\} - \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(-\frac{125}{3} + 2x \right) \right\} \\ = \left\{ (108) - \left(-58\frac{2}{3} \right) \right\} - \left\{ (108) - \left(103\frac{1}{3} \right) \right\} \\ = \left(166\frac{2}{3} \right) - \left(4\frac{2}{3} \right) = 162 $ | 25 + 120)} | | Question
Number | Sc | heme | Marks | |--------------------|--|--|------------| | | | &I for candidates using their a and their r . So,. | | | | 1st M1: For attempting to find one of the co | | | | | | neir a and their r . (You may need to get your ca | alculators | | | out!) | parroat S 's aither side (but part to) 1000 | | | | 3 rd M1: For attempting to find both of the c
A1: Cannot be gained for wrong a and/or r | | | | | Trial & Improvement Cumulative Appro | | | | | A similar scheme to T&I will be applied he | re: | | | | | sum of 13 terms. 2^{nd} M1: (1) $S_{13} = awrt 999.7$ | | | | | s the cumulative sum to 14 terms. Also at this s | tage | | | | S ₁₃ = awrt 999.7 or truncated 999 AND (2) | | | | S ₁₄ = awrt 1005.8 or truncated 1005 AND | | | | | Trial & Improvement Method: for (0.75) 3rd M1: For evidence of examining both n | | | | | | | | | | Eg: $(0.75)^{13}$ {= 0.023757} and $(0.75)^{14}$ {
A1: $n = 14$ | = 0.01/81/9} | | | | Any misreads, $S_n > 10000$ etc, please esc | alate up to your Team Leader | | | | (a) $3\sin(x + 45^\circ) = 2$; $0 \le x < 360^\circ$ (b) 2 | | | | | (a) 33m(x : 13) = 2, 0 2 x 1 300 (c) 1 | 7-5 | | | (a) | $\sin(x + 45^\circ) = \frac{2}{3}$, so $(x + 45^\circ) = 41.8103$ | | M1 | | | | or awrt 0.73° | | | | So, $x + 45^{\circ} = \{138.1897, 401.8103\}$ | $x + 45^{\circ} = \text{either "}180 - \text{their } \alpha \text{" or}$ | M1 | | | | "360° + their α " (α could be in radians). | | | | and $x = \{93.1897, 356.8103\}$ | Either awrt 93.2° or awrt 356.8° | A1 | | | , | Both awrt 93.2° and awrt 356.8° | A1 | | (1-) | $2(1 - \cos^2 x) + 2 = 7\cos x$ | Applies $\sin^2 x = 1 - \cos^2 x$ | M1 | | (b) | $2(1 - \cos x) + 2 = 7\cos x$ $2\cos^2 x + 7\cos x - 4 = 0$ | Correct 3 term, $2\cos^2 x + 7\cos x - 4 = 0$ | F-1000000 | | | BACKLES AND ALLES ALLE | | Al oe | | | $(2\cos x - 1)(\cos x + 4) = 0$, $\cos x =$ | Valid attempt at solving and $\cos x =$ | M1 | | | $\cos x = \frac{1}{2} , \left\{ \cos x = -4 \right\}$ | $\cos x = \frac{1}{2}$ (See notes.) | A1 cso | | | | | 10000 | | | $x = 60^{\circ}$ | | B1 | | | $x = 300^{\circ}$ | | B1 ft | | | | | [0 | | Question
Number | Scheme | larks | | | |--------------------|--|-------|--|--| | (a) | 1 st M1: can also be implied for $x = \text{awrt} - 3.2$ | | | | | | 2^{nd} M1: for $x + 45^{\circ}$ = either "180 – their α " or "360° + their α ". This can be implied by later working. The candidate's α could also be in radians. | | | | | | Note that this mark is not for $x = \text{either "}180 - \text{their } \alpha \text{" or "}360^\circ + \text{their } \alpha \text{"}$. | | | | | | Note: Imply the first two method marks or award M1M1A1 for either awrt 93.2° or awrt 356.8 | 3°. | | | | | Note: Candidates who apply the following incorrect working of $3\sin(x + 45^\circ) = 2$
$\Rightarrow 3(\sin x + \sin 45) = 2$, etc will usually score M0M0A0A0. | | | | | | If there are any EXTRA solutions inside the range $0 \le x < 360$ and the candidate would otherw | ise | | | | | score FULL MARKS then withhold the final aA2 mark (the final mark in this part of the question Also ignore EXTRA solutions outside the range $0 \le x < 360$. | n). | | | | | Working in Radians: Note the answers in radians are $x = \text{awrt } 1.6$, awrt 6.2 | | | | | | If a candidate works in radians then mark part (a) as above awarding the A marks in the same w. If the candidate would then score FULL MARKS then withhold the final aA2 mark (the final methis part of the question.) | | | | | | No working: Award M1M1A1A0 for one of awrt 93.2° or awrt 356.8° seen without any work | cing. | | | | | Award M1M1A1A1 for both awrt 93.2° and awrt 356.8° seen without any working. | | | | | | Allow benefit of the doubt (FULL MARKS) for final answer of | | | | | | $\sin x \{ \text{and not } x \} = \{ \text{awrt } 93.2, \text{ awrt } 356.8 \}$ | | | | | Question
Number | Scheme Ma | arks | | | | |--------------------|--|------|--|--|--| | (b) | 1 st M1: for a correct method to use $\sin^2 x = 1 - \cos^2 x$ on the given equation. | | | | | | | Give bod if the candidate omits the bracket when substituting for $\sin^2 x$, but | | | | | | | $2 - \cos^2 x + 2 = 7\cos x$, without supporting working, (eg. seeing " $\sin^2 x = 1 - \cos^2 x$ ") would so | ore | | | | | | 1 st M0. | | | | | | | Note that applying $\sin^2 x = \cos^2 x - 1$, scores M0. | | | | | | | 1 st A1: for obtaining either $2\cos^2 x + 7\cos x - 4$ or $-2\cos^2 x - 7\cos x + 4$. | | | | | | | 1 st A1: can also awarded for a correct three term equation eg. $2\cos^2 x + 7\cos x = 4$ or | | | | | | | $2\cos^2 x = 4 - 7\cos x \text{ etc.}$ | | | | | | | 2 nd M1: for a valid attempt at factorisation of a quadratic (either 2TQ or 3TQ) in cos, can use any
variable here, c, y, x or cos x, and an attempt to find at least one of the solutions. See introduction | | | | | | | the Mark Scheme. Alternatively, using a correct formula for solving the quadratic. Either the | ли | | | | | | formula must be stated correctly or the correct form must be implied by the substitution. | | | | | | | 2^{nd} A1: for $\cos x = \frac{1}{2}$, BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra | ı | | | | | | answer of $\cos x = -4$, but penalise if candidate states an incorrect result e.g. $\cos x = 4$. If they have | ve | | | | | | used a substitution, a correct value of their c or their y or their x . | | | | | | | Note: 2^{nd} A1 for $\cos x = \frac{1}{2}$ can be implied by later working. | | | | | | | 1 st B1: for either $\frac{\pi}{3}$ or awrt 1.05 ^c | | | | | | | 2^{nd} B1: for either $\frac{5\pi}{3}$ or awrt 5.24° or can be ft from 2π – their β or 360° – their β where | | | | | | | $\beta = \cos^{-1}(k)$, such that $0 < k < 1$ or $-1 < k < 0$, but $k \ne 0$, $k \ne 1$ or $k \ne -1$. | | | | | | | If there are any EXTRA solutions inside the range $0 \le x < 2\pi$ and the candidate would otherwise | | | | | | | score FULL MARKS then withhold the final bB2 mark (the final mark in this part of the question Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$. | 1). | | | | | | Working in Degrees: Note the answers in degrees are $x = 60$, 300 | | | | | | | If a candidate works in degrees then mark part (b) as above awarding the B marks in the same was If the candidate would then score FULL MARKS then withhold the final bB2 mark (the final mar this part of the question.) | ** | | | | | | Answers from no working: | | | | | | | $x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$ scores M0A0M0A0B1B1, | | | | | | | x = 60 and $x = 300$ scores M0A0M0A0B1B0, | | | | | | | $x = \frac{\pi}{3}$ ONLY or $x = 60$ ONLY scores M0A0M0A0B1B0, | | | | | | | $x = \frac{5\pi}{3}$ ONLY or $x = 120$ ONLY scores M0A0M0A0B0B1. | | | | | | | No working: You cannot apply the ft in the B1ft if the answers are given with NO working. | | | | | | | Eg: $x = \frac{\pi}{5}$ and $x = \frac{9\pi}{3}$ FROM NO WORKING scores M0A0M0A0B0B0. | | | | | | | For candidates using trial & improvement, please forward these to your Team Leader. | | | | | | (a) | $10.6^2 + 9.2^2 - 2 \times 10.6 \times 9.2 \times \cos 68^\circ$ | M1 | | |-----|---|-----------|-------------------------------| | | o.e.
QR = 11.1(3) | A1 | | | | QK - 11.1(5) | AI | | | | $\frac{\sin 68}{\text{their QR}} = \frac{\sin Q}{9.2} \text{ or } \frac{\sin R}{10.6} \text{ o.e.}$ | M1 | Or correct use of Cosine Rule | | | then QK 9.2 10.0 | | | | | $Q = 50.01^{\circ} \text{ or } R = 61.98^{\circ}$ | A1 | 2 s.f. or better | | | bearing = 174.9 to 175° | D1 | | | | ocaring 174.5 to 175 | B1 | | | Q11 | Scheme | Marks | |-----|---|----------| | (a) | Use of cosine rule $4^{2} = 2.5^{2} + 3.5^{2} - 2(2.5)(3.5) \cos B$ $\cos B = \frac{1}{7}$ | M1
A1 | | (b) | Use of identity $\sin^2 x + \cos^2 x = 1$
$\sin B = \sqrt{1 - \cos^2 x}$ $= \sqrt{1 - \left(\frac{1}{7}\right)^2}$ | M1
A1 | | | $= \sqrt{\frac{48}{49}}$ $= \frac{4\sqrt{3}}{7}$ | A1 |