Name:

Total Marks:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper M11

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

$$f(x) = x^2 + (k+3)x + k$$

where k is a real constant.

(a)	Find the discriminant of f(x) in terms of k.	(2)
(b) integ	Show that the discriminant of $f(x)$ can be expressed in the form $(k + a)^2 + b$, where a and b are gers to be found.	(2)
(c)	Show that, for all values of k, the equation $f(x) = 0$ has real roots.	(2)
	(Total 6 ma	rks)

Question 2

$$f(x) = 2x^3 - 7x^2 - 5x + 4$$

		(Total 8 marks)
(c)	Factorise $f(x)$ completely.	(4)
(b)	Use the factor theorem to show that $(x+1)$ is a factor of $f(x)$.	(2)
(a)	Find the remainder when $f(x)$ is divided by $(x - 1)$.	(2)

Question 3

The circle C has equation

$$x^2 + y^2 + 4x - 2y - 11 = 0$$

Find

		(Total 8 marks)
(c) givi	the coordinates of the points where <i>C</i> crosses the <i>y</i> -axis, ing your answers as simplified surds.	(4)
(b)	the radius of C,	(2)
(a)	the coordinates of the centre of C,	(2)

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.

(a) Show that the total length, L cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2}$$
(3)

(b) Use calculus to find the minimum value of *L*.

- (c) Justify, by further differentiation, that the value of L that you have found is a minimum. (2)
 - (Total 11 marks)

(6)

(1)

Question 5

The mass, *m* grams, of a leaf *t* days after it has been picked from a tree is given by

 $m = pe^{-kt}$

where k and p are positive constants.

When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.

$$k = \frac{1}{4}\ln 3. \tag{4}$$

(b) Show that

 $\frac{\mathrm{d}m}{\mathrm{d}t} = -0.6\ln 3.$

(c) Find the value of t when

(6) (Total 11 marks)

Figure 1

Figure 1 shows a sketch of the curve *C* with equation y = f(x). The curve *C* passes through the origin and through (6, 0). The curve *C* has a minimum at the point (3, -1).

On separate diagrams, sketch the curve with equation

		(Total 10 marks)
(c)	y = f (x + p), where p is a constant and $0 .$	(4)
(b)	y = -f(x),	(3)
(a)	y = f(2x),	(3)

The curve C has equation

$$y = (x + 1)(x + 3)^2$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.	(4)
--	-----

$$\frac{dy}{dx} = 3x^2 + 14x + 15. \tag{3}$$

(b) Show that dx

The point A, with x-coordinate -5, lies on C.

(c) Find the equation of the tangent to C at A, giving your answer in the form y = mx + c, where m and c are constants. (4)

Another point *B* also lies on *C*. The tangents to *C* at *A* and *B* are parallel.

(Total 14 marks)

(3)

Question 8

Figure 3

The straight line with equation y = x + 4 cuts the curve with equation $y = -x^2 + 2x + 24$ at the points *A* and *B*, as shown in Figure 3.

(a) Use algebra to find the coordinates of the points *A* and *B*.

The finite region R is bounded by the straight line and the curve and is shown shaded in Figure 3.

(b) Use calculus to find the exact area of *R*.

(7) (Total 11 marks)

(4)

(a) Solve for $0 \le x < 360^\circ$, giving your answers in degrees to 1 decimal place,

$$3\sin(x + 45^\circ) = 2$$
 (4)

(b) Find, for $0 \le x < 360^{\circ}$, all the solutions of

$$2\sin^2 x + 2 = 7\cos x$$
.

You must show clearly how you obtained your answers.

(Total 10 marks)

(6)

Question 10

A boat travels from P to Q and then to R. As shown in Fig. 4. Q is 10 km from P on a bearing of 045° . R is 9.2 km from P on a bearing of 113° , so that angle QPR is 68° .

Calculate the distance and bearing of R from Q

(5)

(Total 5 marks)

The diagram shows the triangle *ABC* with AB = 2.5 cm, BC = 3.5 cm and AC = 4 cm

- (a) Show that $\cos B = \frac{1}{7}$ (3)
- (b) Hence find the exact value of $\sin B$

(3)

TOTAL FOR PAPER IS 100 MARKS