Name:

Pure

Mathematics 1

Advanced Subsidiary

Practice Paper M11

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE AS Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

$\mathrm{f}(x)=x^{2}+(k+3) x+k$
where k is a real constant.
(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k.
(b) Show that the discriminant of $\mathrm{f}(x)$ can be expressed in the form $(k+a)^{2}+b$, where a and b are integers to be found.
(c) Show that, for all values of k, the equation $\mathrm{f}(x)=0$ has real roots.

Question 2

$\mathrm{f}(x)=2 x^{3}-7 x^{2}-5 x+4$
(a) Find the remainder when $\mathrm{f}(x)$ is divided by $(x-1)$.
(b) Use the factor theorem to show that $(x+1)$ is a factor of $f(x)$.
(c) Factorise $\mathrm{f}(x)$ completely.

Question 3

The circle C has equation
$x^{2}+y^{2}+4 x-2 y-11=0$
Find
(a) the coordinates of the centre of C,
(b) the radius of C,
(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds.

Question 4

Figure 2
A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, $x \mathrm{~cm}$, as shown in Figure 2.
The volume of the cuboid is 81 cubic centimetres.
(a) Show that the total length, $L \mathrm{~cm}$, of the twelve edges of the cuboid is given by

$$
L=12 x+\frac{162}{x^{2}}
$$

(b) Use calculus to find the minimum value of L.
(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

Question 5

The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$
m=p e^{-k t}
$$

where k and p are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
(a) Write down the value of p.
(b) Show that

$$
\begin{equation*}
k=\frac{1}{4} \ln 3 . \tag{4}
\end{equation*}
$$

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.6 \ln 3
$$

(c) Find the value of t when

Question 6

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=f(x)$.
The curve C passes through the origin and through (6,0).
The curve C has a minimum at the point $(3,-1)$.
On separate diagrams, sketch the curve with equation
(a) $y=f(2 x)$,
(b) $y=-f(x)$,
(c) $\mathrm{y}=\mathrm{f}(\mathrm{x}+\mathrm{p})$, where p is a constant and $0<p<3$.

Question 7

The curve C has equation

$$
y=(x+1)(x+3)^{2}
$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15$.

The point A, with x-coordinate -5 , lies on C.
(c) Find the equation of the tangent to C at A, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point B also lies on C. The tangents to C at A and B are parallel.
(d) Find the x-coordinate of B.

Question 8

Figure 3
The straight line with equation $y=x+4$ cuts the curve with equation $y=-x^{2}+2 x+24$ at the points A and B, as shown in Figure 3.
(a) Use algebra to find the coordinates of the points A and B.

The finite region R is bounded by the straight line and the curve and is shown shaded in Figure 3.
(b) Use calculus to find the exact area of R.

Question 9

(a) Solve for $0 \leq x<360^{\circ}$, giving your answers in degrees to 1 decimal place,

$$
\begin{equation*}
3 \sin \left(x+45^{\circ}\right)=2 \tag{4}
\end{equation*}
$$

(b) Find, for $0 \leq x<360^{\circ}$, all the solutions of

$$
2 \sin ^{2} x+2=7 \cos x
$$

You must show clearly how you obtained your answers.

Question 10

Not to scale

A boat travels from P to Q and then to R. As shown in Fig. 4. Q is 10 km from P on a bearing of 045°. R is 9.2 km from P on a bearing of 113°, so that angle QPR is 68°.

Calculate the distance and bearing of R from Q

Question 11

The diagram shows the triangle $A B C$ with $A B=2.5 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and $A C=4 \mathrm{~cm}$
(a) Show that $\cos B=\frac{1}{7}$
(b) Hence find the exact value of $\sin B$

