Total Marks:

GCSE (9-1) Grade 7 Composite and Inverse Functions

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Show all your working out

Information

- The total mark for this paper is 148 .
- The marks for each question are shown in brackets.
- use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed

Advice

- Read each question carefully before you start to answer it
- Attempt every question
- Check your answers if you have time at the end

1. Functions f and g is such that $\mathrm{f}(x)=2 x-1$ and $\mathrm{g}(x)=\frac{3}{x}$
(a) Find the value of
(i) $\mathrm{f}(3)$
(ii) $\mathrm{fg}(6)$
(b) $\mathrm{f}^{-1}(x)=$
(c) $\operatorname{gf}(x)=$
2. The function f is such that $\mathrm{f}(x)=4 x-1$
(a) Find $\mathrm{f}^{-1}(x)$

The function g is such that $\mathrm{g}(x)=k x^{2}$ where k is a constant.
(b) Given that $\operatorname{fg}(2)=12$, work out the value of k
3. Functions f and g are such that $\mathrm{f}(x)=3(x-4)$ and $\mathrm{g}(x)=\frac{x}{5}+1$
(a) Find the value of $f(10)$
(b) Find $\mathrm{g}^{-1}(x)$
(2)
(c) Show that $\mathrm{ff}(x)=9 x-48$
(2)
4. Given that $\mathrm{f}(x)=x^{2}$ and $\mathrm{g}(x)=x-6$, solve the equation $\mathrm{fg}(x)=\mathrm{g}^{-1}(x)$
5. f and g are functions such that $\mathrm{f}(x)=2 x-3$ and $\mathrm{g}(x)=1+\sqrt{x}$
(a) Calculate $\mathrm{f}(-4)$
(b) Given that $\mathrm{f}(a)=5$, find the value of a.
(c) Calculate $\operatorname{gf}(6)$.
(d) Find the inverse function $\mathrm{g}^{-1}(x)$.
6. Functions f and g are such that
$\mathrm{f}(x)=\frac{1}{x+2}$ and $\mathrm{g}(x)=\sqrt{x-1}$
(a) Calculate $\mathrm{fg}(10)$
(b) Find the inverse function $\mathrm{g}^{-1}(x)$.
7. Functions f and g are such that
$\mathrm{f}(x)=2 x+2$ and $\mathrm{g}(x)=2 x^{2}-5$
(a) Find the composite function fg. Give your answer as simply as possible.
(b) Find the inverse function $\mathrm{f}^{-1}(x)$.
(c) Hence, or otherwise, solve $\mathrm{f}^{-1}(x)=\mathrm{g}^{-1}(x)$.
(3)
8. The function f is such that $\mathrm{f}(x)=\frac{1}{x+3}$
(a) Find the value of $f(2)$
\qquad
(b) Given that $\mathrm{f}(a)=\frac{1}{10}$, find the value of a.
\qquad (2)

The function g is such that $\mathrm{g}(x)=x+2$
(c) Find the function gf.

Give your answer as a single algebraic fraction in its simplest form.
9. Functions f and g are such that $\mathrm{f}(x)=x^{2}$ and $\mathrm{g}(x)=x-3$
(a) Find $\operatorname{gf}(x)$.
(b) Find the inverse function $\mathrm{g}^{-1}(x)$.
(c) Solve the equation $\operatorname{gf}(x)=\mathrm{g}^{-1}(x)$.
(3)
10. The function f is such that $\mathrm{f}(x)=(x-1)^{2}$
(a) Find $f(8)$

The function g is such that $\mathrm{g}(x)=\frac{x}{x-1}$
(b) Solve the equation $\mathrm{g}(x)=1.2$
(3)
(c) (i) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}(x)=$
(ii) Hence write down $\operatorname{gg}(x)$ in terms of x.
11. f is a function such that $\mathrm{f}(x)=\frac{1}{x^{2}+1}$
(a) Find $f\left(\frac{1}{2}\right)$
g is a function such that $\mathrm{g}(x)=\sqrt{x-1}, x \geq 1$
(b) Find $\operatorname{fg}(x)$

Give your answer as simply as possible.
12. The function f is such that $\mathrm{f}(x)=\frac{x-6}{2}$
(a) Find $f(8)$
(b) Express the inverse function f^{-1} in the form $\mathrm{f}^{-1}(x)=$

The function g is such that $\mathrm{g}(x)=\sqrt{x-4}$
(c) Express the function gf in the form $\mathrm{gf}(x)=$ Give your answer as simply as possible.
13. Functions f and g are such that $\mathrm{f}(x)=3 x-2$ and $\mathrm{g}(x)=\frac{10}{x+2}$
(a) Express the inverse function f^{-1} in the form $\mathrm{f}^{-1}(x)=$
(b) Find $\operatorname{gf}(x)$

Simplify your answer.
14. Functions f and g are such that $\mathrm{f}(x)=\frac{2}{x}$ and $\mathrm{g}(x)=\frac{x+1}{x}$
(a) Solve $\mathrm{gf}(a)=3$
(b) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}(x)=$
15. Functions g and h are such that $\mathrm{g}(x)=\frac{x}{2 x-5}$ and $\mathrm{h}(x)=x+4$
(a) Find the value of $g(1)$
(b) Find $\operatorname{gh}(x)$

Simplify your answer.
(c) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}(x)=$
16. The function f is such that $\mathrm{f}(x)=\frac{1}{x+4}, \quad x \neq-4$.

Evaluate $\mathrm{f}^{-1}(3)$.
17. Given that $\mathrm{f}(x)=3 x-1, \mathrm{~g}(x)=x^{2}+4$ and $\mathrm{fg}(x)=\operatorname{gf}(x)$,
show that $x^{2}-x-1=0$
18. Functions f and g are such that

$$
\mathrm{f}(x)=3 x+2 \quad \mathrm{~g}(x)=x^{2}+1
$$

Find an expression for $(\mathrm{fg})^{-1}(x)$
19. The function f is such that $\mathrm{f}(x)=\frac{8}{x+2}$
(a) Find $\mathrm{f}^{-1}(x)$.
(b) Solve the equation $\mathrm{f}^{-1}(x)=\mathrm{f}(x)$
20. The function g is such that $\mathrm{g}(x)=\frac{1}{1-x}$ for $x \neq 1$
(a) Prove that $\operatorname{gg}(x)=\frac{x-1}{x}$
(b) Find $\operatorname{ggg}(3)$
21. Functions f, g and h are such that $\mathrm{f}(x)=3-x, \mathrm{~g}(x)=x^{2}-14$ and $\mathrm{h}(x)=x-2$ Given that $\mathrm{f}(x)=\operatorname{gfh}(x)$, find the values of x.
22. The function f is defined by $\mathrm{f}(x)=\frac{x-1}{x}, x \neq 0$ Solve $\mathrm{ff}(x)=-2$
23. $\mathrm{f}(x)=\frac{x}{x+3}, \quad x \in \mathrm{R}, \quad x \neq-3$
(a) If $\mathrm{f}^{-1}(x)=-5$, find the value of x.
(b) Show that $\mathrm{ff}^{-1}(x)=x$
24. $\mathrm{f}(x)=\frac{x}{x+3}, \quad x \in \mathrm{R}, \quad x \neq-3$
(a) If $\mathrm{f}^{-1}(x)=-5$, find the value of x.
(b) Show that $\mathrm{ff}^{-1}(x)=x$
25. $f(x)=2 x+c$
$g(x)=c x+5$
$f g(x)=6 x+d$
c and d are constants.
Work out the value of d.
26. $\mathrm{f}(x)=3 x^{2}-2 x-8$

Express $\mathrm{f}(x+2)$ in the form $a x^{2}+b x$
27. $\mathrm{f}(x)=x^{2}-2 x-4$

Express $\mathrm{f}(2 x-1)$ in the form $a x^{2}+b x+c$
28. $\mathrm{f}(x)=x^{2}+3 x+4$

Show that $\mathrm{f}(x-2)-\mathrm{f}(x)=-4 x-2$

