Variable Acceleration - Edexcel Past Exam Questions

1. A particle P moves on the x-axis. At time t seconds, its acceleration is $(5-2 t) \mathrm{m} \mathrm{s}^{-2}$, measured in the direction of x increasing. When $t=0$, its velocity is $6 \mathrm{~m} \mathrm{~s}^{-1}$ measured in the direction of x increasing. Find the time when P is instantaneously at rest in the subsequent motion.
2. A particle P moves on the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$ in the direction of x increasing, where v is given by

$$
v= \begin{cases}8 t-\frac{3}{2} t^{2}, & 0 \leq t \leq 4 \\ 16-2 t, & t>4\end{cases}
$$

When $t=0, P$ is at the origin O.
Find
(a) the greatest speed of P in the interval $0 \leq t \leq 4$,
(b) the distance of P from O when $t=4$,
(c) the time at which P is instantaneously at rest for $t>4$,
(d) the total distance travelled by P in the first 10 s of its motion.

June 07 Q8
3. \quad A particle P moves along the x-axis in a straight line so that, at time t seconds, the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$, where

$$
v= \begin{cases}10 t-2 t^{2}, & 0 \leq t \leq 6, \\ \frac{-432}{t^{2}}, & t>6 .\end{cases}
$$

At $t=0, P$ is at the origin O. Find the displacement of P from O when
(a) $t=6$,
(b) $t=10$.
4. At time $t=0$ a particle P leaves the origin O and moves along the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$, where

$$
v=8 t-t^{2} .
$$

(a) Find the maximum value of v.
(b) Find the time taken for P to return to O.

June 09 Q2
5. A particle P moves along the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction, where $v=3 t^{2}-4 t+3$. When $t=0, P$ is at the origin O. Find the distance of P from O when P is moving with minimum velocity.

Jan 10 Q1
6. A particle P moves on the x-axis. The acceleration of P at time t seconds, $t \geq 0$, is ($3 t+5$) $\mathrm{m} \mathrm{s}^{-2}$ in the positive x-direction. When $t=0$, the velocity of P is $2 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction. When $t=T$, the velocity of P is $6 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction.

Find the value of T.
June 10 Q1
7. A particle moves along the x-axis. At time $t=0$ the particle passes through the origin with speed $8 \mathrm{~m} \mathrm{~s}^{-1}$ in the positive x-direction. The acceleration of the particle at time t seconds, $t \geq 0$, is $\left(4 t^{3}-12 t\right) \mathrm{m} \mathrm{s}^{-2}$ in the positive x-direction.

Find
(a) the velocity of the particle at time t seconds,
(b) the displacement of the particle from the origin at time t seconds,
(c) the values of t at which the particle is instantaneously at rest.

Jan 11 Q3
8. A particle P moves on the x-axis. The acceleration of P at time t seconds is $(t-4) \mathrm{m} \mathrm{s}^{-2}$ in the positive x-direction. The velocity of P at time t seconds is $v \mathrm{~m} \mathrm{~s}^{-1}$. When $t=0, v=6$.

Find
(a) v in terms of t,
(b) the values of t when P is instantaneously at rest,
(c) the distance between the two points at which P is instantaneously at rest.

