Name:

Total Marks:

GCSE (9-1) Grade 8/9 Vectors Proof Questions

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Show all your working out

Information

- The total mark for this paper is 64 .
- The marks for each question are shown in brackets.
- use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed

Advice

- Read each question carefully before you start to answer it
- Attempt every question
- Check your answers if you have time at the end

1.

$O A B$ is a triangle.
$\overrightarrow{O A}=\mathbf{a}, \quad \overrightarrow{O B}=\mathbf{b}$
P is a point on $A B$ so that $A P: P B$ is $2: 3$
Show that $\overrightarrow{O P}=\frac{1}{5}(3 \mathbf{a}+2 \mathbf{b})$
2.

$\overrightarrow{O A}=2 \mathrm{a}$
$\overrightarrow{O B}=3 \mathrm{~b}$
P is a point on $A B$ so that $A P: P B$ is $3: 2$
Show that $\overrightarrow{O P}=\frac{1}{5}(4 \mathbf{a}+9 \mathbf{b})$
3.

$O A B$ is a triangle.
$\overrightarrow{O A}=\mathbf{a}, \quad \overrightarrow{O B}=\mathbf{b}$
P Is the point on $A B$ such that $A P: P B$ is $3: 5$

Find $\overrightarrow{O P}$ in terms of a and b . Give your answer in its simplest form
4.

$O A B$ is a triangle
$\overrightarrow{O A}=3 a$
$\overrightarrow{O B}=\mathbf{2 b}$

P is a point on $A B$ so that $A P: P B$ is $1: 3$
Given that $\overrightarrow{O P}=k(9 \mathbf{a}+2 \mathbf{b})$
Find the value of k
5.

$\overrightarrow{O A}=\mathbf{3 a}$
$\overrightarrow{O B}=\mathbf{3} \mathbf{b}$

X is the point on $A B$ such that $A X: X B=9: 4$

Find the value of k if $\overrightarrow{O X}=k(4 a+9 b)$
6.

In triangle $A B C, M$ lies on $B C$ such that $B M=\frac{3}{4} B C$.
$\overrightarrow{A B}=\mathbf{s}$ and $\overrightarrow{A C}=\mathbf{t}$

Find $\overrightarrow{A M}$ in terms of \mathbf{s} and \mathbf{t}.

Give your answer in its simplest form.
7.

$C A Y B$ is a quadrilateral.

$$
\begin{aligned}
& \overrightarrow{C A}=3 \mathbf{a} \\
& \overrightarrow{C B}=6 \mathbf{b} \\
& \overrightarrow{B Y}=5 \mathbf{a}-\mathbf{b}
\end{aligned}
$$

X is the point on $A B$ such that $A X: X B=1: 2$
Prove that $\overrightarrow{C X}=\frac{2}{5} \overrightarrow{C Y}$
8.

$O P Q R$ is a parallelogram.
M is the mid-point of the diagonal $O Q$.
$\overrightarrow{O P}=2 \mathbf{p}$ and $\overrightarrow{O R}=2 \mathbf{r}$

Use vectors to prove that M is also the mid-point of $P R$.
9. $O A B$ is a triangle. P and Q are the midpoints of $O A$ and $O B$ respectively.

The point X lies on the line PB , and $\mathrm{PX}: \mathrm{XB}$ is in the ratio 1:2.

Show that $\overrightarrow{Q X}$ is parallel to $\overrightarrow{Q A}$
10. $O A C D$ is a trapezium made from three equilateral triangles.
$\overrightarrow{O A}=\mathbf{a}$
$\overrightarrow{O B}=\mathbf{b}$
M is the midpoint of $C D$.

(a) Write $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.
(b) Show that $\overrightarrow{O C}$ is parallel to $\overrightarrow{B M}$.
11.

D is the point on $B C$ extended such that $B C: C D=1: 2$
X is a point on $O C$ such that $O X=\frac{1}{3} O C$
Show that A, X and D lie on the same straight line
12.

$O M A, O N B$ and $A B C$ are straight lines.
M is the midpoint of $O A$.
B is the midpoint of $A C$.
$\overrightarrow{O A}=6 \mathbf{a} \quad \overrightarrow{O B}=6 \mathbf{b} \quad \overrightarrow{O N}=k \mathbf{b} \quad$ where k is a scalar quantity.
Given that $M N C$ is a straight line, find the value of k.
13.

$O A B C$ is a parallelogram. P is the point on $A C$ such that $A P=\frac{2}{3} A C$.
a) Find the vector $\overrightarrow{O P}$. Give your answer in terms of \boldsymbol{a} and \boldsymbol{c}.
b) Given that the midpoint of $C B$ is M, prove that $O P M$ is a straight line.
14.

$\overrightarrow{O A}=3 \boldsymbol{a} \quad \overrightarrow{A Q}=\boldsymbol{a} \quad \overrightarrow{O B}=\boldsymbol{b} \quad \overrightarrow{B C}=\frac{1}{2} \boldsymbol{b}$.
M is the midpoint of $Q B$.
Prove that $A M C$ is a straight line.

