

A level Applied Paper 3B Mechanics Practice Paper M17 MARK SCHEME

Question Number	Scheme	Ма	arks
(a)	$s = vt - \frac{1}{2}at^{2}$ $40 = 10 \times 5 - \frac{1}{2}a5^{2}$ $a = 0.8$	M1 A2	(4)
(b)	Finding $u = 6$ $s = ut + \frac{1}{2}at^2$ (A to M) $20 = 6t + \frac{1}{2}0.8t^2$ $t = \frac{-15 \pm \sqrt{225 + 200}}{2}$ = 2.8 or 2.81 or better	M1 M1 A1 DM 1 A1	(5)
	Alternative: Finding $v (= \sqrt{68})$ $s = vt - \frac{1}{2}at^2$ (A to M) $20 = \sqrt{68}t - \frac{1}{2}0.8t^2$ $t = \frac{\sqrt{68} \pm \sqrt{68 - 32}}{0.8}$ $= 2.8 \text{ or } 2.81 \text{ or better}$	M1 M1 A1 DM1 A1	(5)
	Alternative: $s = vt_1 - \frac{1}{2}at_1^2 (M \text{ to } B)$ $20 = 10t_1 - \frac{1}{2}0.8t_1^2$ $t_1 = \frac{10 \pm \sqrt{100 - 32}}{0.8}$ $= 2.192$ $t = 5 - t_1 = 2.8 \text{ or } 2.81 \text{ or better}$	M2 A1 DM 1	(5) 9

	Notes	
(a)	First M1 for a complete method to produce a value for a. They may use two (or more equations) and solve for a. (see possible equations) A2 if all correct, A1A0 for one error Third A1 for 0.8 (m s ⁻²) Possible equations:	
	$40 = 5u + \frac{1}{2}a.5^{2}$ $10^{2} = u^{2} + 2a.40$	
	$10 = u + 5a$ $40 = \frac{(u+10)}{2}.5$	
(b)	First M1 for attempt to find a value for u (This may have been done in part (a) but MUST be used in (b)) Second M1 for a complete method (may involve 2 or more <i>suvat</i> equations) for finding an equation in t only First A1 for a correct equation Third M1, dependent on previous M, for solving their equation for t	
	Second A1 for 2.8 (s) or better or $\frac{5(2\sqrt{17}-6)}{4}$; $\frac{40}{6+2\sqrt{17}}$	

Question Number	Scheme	Marks
	$T - 0.5g = 0.5a$ $15 - T - 0.75g = 0.75a$ $(OR: 15 - 0.5g - 0.75g = 1.25a)$ $(a = 2.2 \text{ m s}^{-2})$ $T = 6 \text{ N}$	M1 A1 M1 A1 M1 A1 6
	Notes First M1 for an equation of motion for either P or Q with usual rules i.e. correct no. of terms, dimensionally correct but condone sign errors First A1 for a correct equation (allow T replaced by T and/or T replaced by T and/or T replaced by T and/or T rules as above Second A1 for a correct equation (allow T consistently replaced by T and/or T and/or T consistently replaced by T and/or T and/or T and/or T rules as above T and/or T a	

Question	Scheme	Marks
Number		
(a)	A P G Q C B	
	↑	
	(0.2 <i>S</i>) <i>R</i> 75g 30g 75g (<i>S</i>) 5 <i>R</i>	
	$(\uparrow) R + 5R = 75g + 30g + 75g$	
	$M(A)$ 75 $gx + 75g2x + 30g \times 3 = 5R \times 4$	M1 A2
	$x = \frac{34}{15} = 2.3$ or better	M1 A2 A1
	(N.B. Or another Moments Equation)	(M1 A2)
(b)	uniform – mass is or acts at midpoint of plank; centre of mass is at middle of plank; weight acts at the middle of the plank, centre of gravity is at midpoint	B1 B1
	rod - plank does not bend, remains straight, is inflexible, is rigid	(2)
	Notes	,
(a)	First M1 for either a vertical resolution (with correct of terms) or a moments equation (all	
(-)	terms dim correct and correct no. of terms)	
	First A1 and Second A1 for a correct equation in R (or S where $S = 5R$) only or R and x only or S and x only. (—1 each error, A1A0 or A0A0)	
	Second M1 for a moments equation (all terms dim correct and correct no. of terms) Third A1 and Fourth A1 for a correct equation in R (or S where $S = 5R$) only or R and X	
	only or S and x only. (-1 each error, A1A0 or A0A0) Fifth A1 for $x = {}^{34}/_{15}$ oe or 2.3 (or better)	
	(i) In a moments equation, if R and 5R (or S and 0.2S) are interchanged, treat as 1 error. (ii) Ignore diagram if it helps the candidate.	
	(iii) If an equation is correct but contains both R and S , or $S = 5R$ is never used, treat as 1 error.	
	(iv) Full marks possible if all g's omitted.	
	(v) For inconsistent omission of g, penalise each omission. $M(B)$, $R \times 6 + 5R \times 2 = 75g(6-x) + 75g(6-2x) + 30g \times 3$	
	$M(C)$, $75g(4-x)+75g(4-2x)+30g\times 1=R\times 4$	
	$M(G)$, $75g(3-x)+5R\times 1=R\times 3+75g(2x-3)$	
	M(P), $Rx + 30g(3-x) + 75gx = 5R(4-x)$	
	$M(Q)$, $75gx + 30g(2x-3) + 5R(4-2x) = R \times 2x$	
(b)	First B1 for first correct answer seen.	
	Second B1 for the other answer, but only award this second mark if no extras given.	

Question Number	Scheme	Marks	
	(15i + j) + (5qi - pj) + (-3pi - qj) = 0	M1	
	3p-5q=15	M1 A1	
	p+q=1 $p=2.5 \ q=-1.5$	M1 A1 A1	
F ₂ = 9.7			6
	Notes		
	First M1 for equating the sum of the three forces to zero (can be implied by subsequent working) Second M1 for equating the sum of the i components to zero AND the sum of the j components to zero oe to produce TWO equations, each one being in p and q ONLY. First A1 for TWO correct equations (in any form) N.B. It is possible to obtain TWO equations by using $\lambda(3p-5q-15)=\mu(p+q-1)$ with		
	TWO different pairs of values for λ and μ , with one pair not a multiple of the other		
	e.g λ =1, μ =1 AND λ =1, μ =2. Third M1(independent) for attempt (either by substitution or elimination) to produce an equation in either p ONLY or q ONLY. Second A1 for p = 2.5 (any equivalent form, fractions do not need to be in lowest terms) Third A1 for q = -1.5 (any equivalent form, fractions do not need to be in lowest terms)		

Question Number	Scheme	Marks
	$F = \mu R$ (\(\sigma\)), $R = 10\sin\alpha + 5g\cos\alpha$ (45.2) (\(\sigma\)), $F = 5g\sin\alpha - 10\cos\alpha$ (21.4) $\mu = \frac{g\sin\alpha - 2\cos\alpha}{2\sin\alpha + g\cos\alpha} = 0.47 \text{ or } 0.473$	B1 M1 A2 M1 A2 M1 A1
	Notes	
	B1 for $F = \mu R$ seen or implied First M1 for resolving perpendicular to the plane with usual rules First and second A1's for a correct equation. A1A0 if one error. Second M1 for resolving parallel to the plane with usual rules Third and fourth A1's for a correct equation. A1A0 if one error. If m is used instead of 5, penalise once in each equation. Third M1 independent for eliminating R to produce an equation in μ only. Does not need to be $\mu = \dots$. Fifth A1 for 0.47 or 0.473.	

Q.	Scheme	Marks	Notes
a	A $\lim_{C} \beta$ $\lim_$		
	$F = \frac{2}{3}R$ seen or implied	B1	Use of $F = \mu R$. Could be on diagram. Allow in (b) if not seen before
	$M(C): 5g \times 3\cos\alpha + F \times 7\sin\alpha = 7\cos\alpha \times R$	M1	Moments about C or alternative complete method to find equation in F and R or R only. Dimensionally correct and all terms needed. Condone sin/cos confusion and sign error(s).
		A1	At most one error
		A1	Correct unsimplified equation
	$15g\cos\alpha = R\bigg(7\cos\alpha - \frac{14}{3}\sin\alpha\bigg)$		
	$15g \times \frac{4}{5} = R\left(7 \times \frac{4}{5} - \frac{14}{3} \times \frac{3}{5}\right) = \frac{14}{5}R$	dM1	Substitute for F and trig and solve for R Dependent on previous M1
	$R = \frac{30}{7}g = 42(\text{N})$	A1	
		(6)	
	e.g. of alternative for M1A1A1:		
	M(A): $T \sin \beta + 8R \cos \alpha = 8F \sin \alpha + 20g \cos \alpha$ and M(B): $7T \sin \beta = 20g \cos \alpha$	(M1)	
		(A1)	At most 1 error
	$\frac{20g}{7}\cos\alpha + 8R\cos\alpha = 8F\sin\alpha + 20g\cos\alpha$	(A1)	Correct unsimplified equation in F and R or R only

Q.			
٦.	Scheme	Marks	Notes
	Resolve \updownarrow : $T\cos\theta + R = 5g$		Need all terms.
b	$R + T\sin(\beta - \alpha) = 5g$	M1	Condone sin/cos confusion and sign error(s).
		A1	Correct in R or their R
	Resolve \leftrightarrow : $T \sin \theta = F(=28)$		Need both terms.
	$F\left(=\frac{2}{3}R\right) = T\cos(\beta - \alpha)$	M1	Condone sin/cos confusion
		A1	Correct in R or their R
	Solve simultaneous equations for $\beta - \alpha$		
	$\tan(\beta - \alpha) = 4$, $\beta = 50.9^{\circ}$ (51°)	A1	cso . Max 3 s.f.
		(5)	
Alt b	$M(B): 7 \times T \sin \beta = 5g \cos \alpha \times 4$	M1	Moments equation. Dimensionally correct. Condone sin/cos confusion and sign error(s).
	$\left(T\sin\beta = \frac{16}{7}g\right)$	A1	
	OR: resolve perpendicular to the rod:	()(1)	
	$T\sin\beta + R\cos\alpha = 5g\cos\alpha + \frac{2}{3}R\sin\alpha$	(M1) (A1)	
	Resolve parallel to rod: $T\cos\beta + 5g\sin\alpha = F\cos\alpha + R\sin\alpha$ $\left(=\frac{2}{3}R\cos\alpha + R\sin\alpha\right)$	M1	All terms needed. Condone sin/cos confusion and sign error(s).
	$\left(T\cos\beta = \frac{13}{7}g\right)$	A1	
	Solve simultaneous equations for β		
	$\tan \beta = \frac{16}{13}$, $\beta = 50.9^{\circ}$ (51°)	A1	cso. Max 3 s.f.
		(5)	
		[11]	

Q.			
٠	Scheme	Marks	Notes
a	30 ms ⁴ \(\sigma \) p \(q \) ms ⁴ \(\text{\$Q\$} \) \(q \) ms ⁴ \(\text{\$Q\$} \) \(q \) ms ⁴ \(\text{\$B\$} \)		
	$30\cos 60 \times 2 + q\cos \theta \times 2 = 40$	M1	Equation for horizontal distance Need to be using the 40 m
		A1	Correct unsimplified
	$30\sin 60 \times 2 - 4.9 \times 4 = q\sin \theta \times 2 - 4.9 \times 4$ $30\sin 60 = q\sin \theta$	M1	Equal vertical distance or initial vertical components of velocity
		A1	Correct unsimplified (no error seen)
	$q\cos\theta = \pm 5$		
	$q \sin \theta = 15\sqrt{3}$		
	$\tan \theta = 3\sqrt{3}$		Solve for q or θ
	$(\tan \theta = 6\sin 60)$	DM1	Dependent on both preceding M marks
	$\theta = 79.1 (79)$		(1.38 radians) or better
	q = 26.45 = 26.5	A1	(26 or better) $(10\sqrt{7})$
		(6)	Both correct and no error seen
		(0)	
b	Vertical component of speed =	M1	Must be working towards speed of P (or v^2) (condone if working on Q - they equal vertical components of velocity)
	$30\sin 60 - 2g = 6.38$	A1	Correct unsimplified. Accept ±
	speed = $\sqrt{(30\cos 60)^2 + 6.38^2}$	DM1	Use Pythagoras. Dependent on previous M Follow their vertical component.
		A1ft	Correct unsimplified equation in v or v^2 .
	$=\sqrt{15^2+6.38^2}=16.3 \mathrm{(m\ s^{-1})}$	A1	or 16 2 or 3 sf only
		(5)	
b alt	Vertical distance =	M1	Must be working towards speed of P
	$30\sin 60 \times 2 - 4.9 \times 4 = 32.36$	A1	Correct unsimplified
	Conservation of energy:	DM1	Dependent on previous M. Follow their vertical distance.
	$\frac{1}{2}mv^2 + mg \times 32.36 = \frac{1}{2}m \times 900$	A1ft	Correct unsimplified equation in v or v^2 .
	$v = 16.3 \text{ (m s}^{-1}) \text{ (16)}$	A1	
		(5)	
		[11]	

Question Number	Scheme	Marks
(a)	$\tan \theta = \frac{2}{9} \theta = 12.5^{\circ}$ bearing 103°	M1 A1 A1 (3)
(b) (i) (ii)	$ \mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j}) \mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j}) $	M1 A1 A1 (3)
(c)	$\overrightarrow{QP} = (8+5t)\mathbf{i} + (6-10t)\mathbf{j}$	M1 A1 (2)
(d)	$D^{2} = (8+5t)^{2} + (6-10t)^{2}$ $= 125t^{2} - 40t + 100$ $100 = 125t^{2} - 40t + 100$ $0 = 5t(25t - 8)$ $t = 0 \text{ or } 0.32$	M1 A1 M1 M1 A1 A1 (6)
	Notes	
(a)	M1 for $\tan \theta = \pm \frac{2}{9}$ or $\pm \frac{9}{2}$ or use $\sin \theta$ or $\cos \theta$ First A1 for $\theta = \pm 13^{\circ}$ or $\pm 77^{\circ}$ or $\pm 12.5^{\circ}$ or $\pm 77.5^{\circ}$ or better Second A1 for 103°	
(b)	M1 for clear attempt at $\mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j})$ or $\mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j})$ (Allow slips but must be a '+' sign and $\mathbf{r} + t\mathbf{v}$)	
(i)	First A1 for $\mathbf{p} = (9\mathbf{i} + 10\mathbf{j}) + t(9\mathbf{i} - 2\mathbf{j})$ oe	
(ii)	Second A1 for $\mathbf{q} = (\mathbf{i} + 4\mathbf{j}) + t(4\mathbf{i} + 8\mathbf{j})$ oe	
(c)	M1 for $\mathbf{p} - \mathbf{q}$ or $\mathbf{q} - \mathbf{p}$ with their \mathbf{p} and \mathbf{q} substituted A1 for correct answer $\overrightarrow{QP} = (8 + 5t)\mathbf{i} + (6 - 10t)\mathbf{j}$ (don't need \overrightarrow{QP} but on R.H.S must be identical coefficients of \mathbf{i} and \mathbf{j} but allow column vectors)	
(d)	First M1 for attempt to find QP or QP^2 in terms of t only, using correct formula First A1 for a correct expression (with or without $$) $125t^2 - 40t + 100$ Second M1 for $$ (3 term quadratic) = 10 or (3 term quadratic) = 100. Third M1 for quadratic expression = 0 and attempt to solve (e.g. factorising or using formula) Second A1 for $t = 0$ (if they divide by t and lose this value but get 0.32, M1A0A1) Third A1 for $t = 0.32$ oe	

Question Number	Scheme	Mari	ks
(a) (i) (ii)	For $A: T-F=2ma$ For $B: mg-T=ma$	M1 A1 M1 A1	(4)
(b)	$R = 2mg$ $mg(1-2\mu) = 3ma$ $\frac{g}{3}(1-2\mu) = a$	B1 M1 A1	(3)
(c)	$v^{2} = \frac{2gh}{3}(1 - 2\mu)$ $v = \sqrt{\frac{2gh}{3}(1 - 2\mu)}$	M1 A1	(2)
(d)	$-\mu R = 2ma'$ $0^{2} = \text{their } u^{2} - 2a's$ $0 = \frac{2gh}{3}(1 - \frac{2}{3}) - 2(\frac{1}{3}g)s \text{ (or } s = (d - h))$ $s = \frac{1}{3}h$ $d = \frac{1}{3}h + h = \frac{4}{3}h$	M1 M1 A1 (A1) A1 A1	(5)
(e)	A (or B) would not move; OR A (or B) would remain in (limiting) equilibrium; OR the system would remain in (limiting) equilibrium	B1	(1) 15

	Notes				
(a)(i)	First M1 for equation of motion for A with usual rules				
	First A1 for a correct equation (allow $-T$ instead of T)				
(ii)	Second M1 for equation of motion for B with usual rules				
	Second A1 for a correct equation (allow consistent –T instead of T)				
(b)	B1 for $R = 2mg$				
	M1 for using $F = \mu R$ and eliminating to give equation in a and μ only.				
	A1 for PRINTED ANSWER (Must be identical to printed answer)				
(c)	M1 for using $v^2 = u^2 + 2as$ or any other complete method to find the speed of A				
	A1 for correct answer in any form				
(d)	First M1 for equation of motion for A with $T = 0$ and $F = \mu R$ e.g. $\mu R = 2m\alpha'$ (must be				
	2m)				
	Second M1 for using $v^2 = u^2 + 2as$ with their u^2 from (c), $v = 0$ and a new a (does not				
	need to be substituted)				
	First A1 for a correct equation in s, g and h with $\mu = \frac{1}{3}$				
	Second A1 for $s = \frac{1}{3}h$				
	Third A1 for $d = \frac{4}{3}h$				
	ALTERNATIVE using work-energy principle:				
	M2 for $\mu Rs = \frac{1}{2} 2mu^2$ (their u^2 from (c)) (M1 if they use m)				
	First A1 for $\frac{1}{3}2mgs = \frac{1}{2}2m\frac{2gh}{3}(1-\frac{2}{3})$				
	Second A1 for $s = \frac{1}{4} / \frac{1}{3} h$				
	Third A1 for $d = \frac{4}{3}h$				
(e)	B1 for any one of the alternatives listed above.				

Q.	Cabania	Marka	Natas
	Scheme	Marks	Notes
a	$v = 0 \Rightarrow 3t^2 - 16t + 21 = 0$	M1	Set $v = 0$ and attempt to solve
	$v = 0 \Rightarrow 3t^2 - 16t + 21 = 0$ $((3t - 7)(t - 3) = 0)$ $t_1 = \frac{7}{3}$, $t_2 = 3$	A1	
		(2)	
b	$a = \frac{\mathrm{d}}{\mathrm{d}t} \left(3t^2 - 16t + 21 \right)$	M1	Differentiate v to obtain a
	= 6t - 16	A1	
	$= 6t - 16$ $t = t_1, a = 6 \times \frac{7}{3} - 16 = -2 \text{ (m s}^{-2}\text{)}$ Magnitude 2 (m s ⁻²)	A1	No errors seen. Must be positive - the Q asks for magnitude.
		(3)	
с	$s = \int \left(3t^2 - 16t + 21\right) dt$	M1	Integrate v to find s
	$=t^3-8t^2+21t(+C)$	A1	
	$\pm \left(\left(3^3 - 8 \times 9 + 21 \times 3 \right) - \left(\left(\frac{7}{3} \right)^3 - 8 \times \frac{49}{9} + 21 \times \frac{7}{3} \right) \right)$	M1	Correct use of their limits
	$s = 0.148 \text{ (m)} \qquad \left(\frac{4}{27}\right)$	A1	Final answer must be positive. 0.15 or better
		(4)	
d	Return to $O \Rightarrow s = 0 = t(t^2 - 8t + 21)$	B1	seen or implied
	Discriminant of quadratic = $64-4\times21(=-20)<0$	M1	Or equivalent. *given answer so must show some evidence of method*
	No real roots \Rightarrow does not return to O	A1	Sufficient correct working to justify *given answer*
		(3)	
dalt	Travels away until $t_1 = \frac{7}{3}$, turns back at $t_2 = 3$ then turns away again	M1	Complete story
	$s_3 = 18$	B1	Seen or implied
	Complete argument	A1	
		(3)	
dalt	Distance time graph	B1	
	Locate min turning point	M1	
	Complete argument	A1	
		(3)	
		[12]	