# Pure Mathematics 2 Practice Paper M14 MARK SCHEME | Q1 | Scheme | Marks | |----|-----------------------------------------------------------------------------------------------------------------------------------|------------| | а | $\frac{dy}{dx} = 6x^2 + 24x - 24$ | M1 | | | $\frac{d^2y}{dx^2} = 12x + 24$ | M1 | | | States that $\frac{d^2y}{dx^2} = 12x + 24$ for all values $-5 \le x \le -3$ and concludes $C$ is concave over the given interval. | B1 | | | | (3) | | b | Point of inflection occurs when $\frac{d^2 y}{dx^2} = 0$ | M1 | | | 12x + 24 = 0 $x = -2$ | <b>A</b> 1 | | | Substitutes $x = -2$ into $y = 2x^3 + 12x^2 - 24x - 3$ obtaining $y = 83$ (-2, 83) | <b>A</b> 1 | | | | (3) | | Question<br>Number | Sc | cheme | Marks | |--------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------| | (a) | s 20 . 160 | M1: Use of a correct $S_{\infty}$ formula | | | | $S_{\infty} = \frac{20}{1 - \frac{7}{8}}$ ; = 160 | A1: 160 | M1A1 | | | Accept correct | answer only (160) | | | | | | [2] | | (b) | 20(1 (7)12) | M1: Use of a correct $S_n$ formula with $n = 12$ | | | | $S_{12} = \frac{20(1-(\frac{7}{8})^{12})}{1-\frac{7}{4}}$ ; = 127.77324 | (condone missing brackets around 7/8) | M1A1 | | | 1-5 | A1: awrt 127.8 | | | | T & I in (b) requires all 12 terms to be calc | ulated correctly for M1 and A1 for awrt 127.8 | | | | | | [2] | | (c) | - V | Applies $S_N$ (GP only) with $a = 20$ , $r = \frac{7}{8}$ and | | | | $160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{4}} < 0.5$ | "uses" 0.5 and their $S_{\infty}$ at any point in their | M1 | | | $1-\frac{7}{8}$ | working. (condone missing brackets around 7/8)(Allow =, $<$ , $>$ , $\ge$ , $\le$ ) but see note below. | | | | (7) <sup>N</sup> (7) <sup>N</sup> (05) | Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $+\left(\frac{7}{8}\right)^N$ oe | | | | $160\left(\frac{7}{8}\right)^N < (0.5) \text{ or } \left(\frac{7}{8}\right)^N < \left(\frac{0.5}{160}\right)$ | (Allow =, $<$ , $>$ , $\ge$ , $\le$ ) but see note below. | dM1 | | | (8) (8) (100) | Dependent on the previous M1 | | | | | Uses the power law of logarithms or takes logs | | | | | base 0.875 correctly to obtain an equation or an<br>inequality of the form | | | | | | | | | $N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$ | $N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their }S_{\infty}}\right)$ | M1 | | | | or | IVII | | | | $N > \log_{0.875} \left( \frac{0.5}{\text{their } S_{\infty}} \right)$ | | | | | (Allow =, <, >, $\geq$ , $\leq$ ) but see note below. | | | | $N > \frac{\log(\frac{9.5}{160})}{\log(\frac{7}{8})} = 43.19823 \Rightarrow N = 44$ | $N = 44$ (Allow $N \ge 44$ but not $N > 44$ | A1 cso | | | Some candidates do not realise that the direct of their solution. BUT it is possible to gain | e in a candidate's working loses the final mark.<br>tion of the inequality is reversed in the final line<br>full marks for using =, as long as no incorrect | | | | working seen. | | [4] | | | | | Total 8 | | | Trial & Im | provement Method in (c): | | | | 1 <sup>st</sup> M1: Attempts 160 – S <sub>N</sub> | or $S_N$ with at least one value for $N > 40$ | | | | | $0 - S_N$ or $S_N$ with $N = 43$ or $N = 44$ | | | | | $S_N$ or $S_N$ for both $N = 43$ and $N = 44$ with both | values | | | | correct to 2 DP<br>ort 0.51 and 160 - $S_{44}$ = awrt 0.45 | | | | | $159.49 \text{ and } S_{44} = \text{awrt} 0.43$ | | | | | $A1: N = 44 \cos \alpha$ | | | | | y with no working scores no marks | | | Question<br>Number | Scheme | Marks | | |--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------| | (a) | $x^2 + x - 6 = (x+3)(x-2)$ | B1 | | | | $\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x(x-2) + 3(2x+1)}{(x+3)(x-2)}$ | M1 | | | | $=\frac{x^2+4x+3}{(x+3)(x-2)}$ | A1 | | | | $=\frac{(x+3)(x+1)}{(x+3)(x-2)}$ | | | | | $=\frac{(x+1)}{(x-2)}$ eso | A1* | | | (b) | One end either $(y) > 1, (y) \ge 1$ or $(y) < 4, (y) \le 4$ | B1 | (4) | | | 1 < y < 4 | B1 | (2) | | (c) | Attempt to set<br>Either $g(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{-1}(x) = x$ or $g^{2}(x) = x$ | | | | | $\frac{(x+1)}{(x-2)} = x \qquad \frac{x+1}{x-2} = \frac{2x+1}{x-1} \qquad \frac{2x+1}{x-1} = x \qquad \frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2} = x$ | M1 | | | | $x^2 - 3x - 1 = 0 \Rightarrow x = \dots$ | A1, dM1 | | | | $a = \frac{3 + \sqrt{13}}{2}$ oe $(1.5 + \sqrt{3.25})$ cso | A1 | | | | | (10 mai | (4)<br>rks) | - (a) - B1 $x^2 + x 6 = (x + 3)(x 2)$ This can occur anywhere in the solution. - M1 For combining the two fractions with a common denominator. The denominator must be correct for their fractions and at least one numerator must have been adapted. Accept as separate fractions. Condone missing brackets. Accept $$\frac{x}{x+3} + \frac{3(2x+1)}{x^2+x-6} = \frac{x(x^2+x-6)+3(2x+1)(x+3)}{(x+3)(x^2+x-6)}$$ Condone $$\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x \times x - 2}{(x+3)(x-2)} + \frac{3(2x+1)}{(x+3)(x-2)}$$ A1 A correct intermediate form of $\frac{\text{simplified quadratic}}{\text{simplified quadratic}}$ Accept $$\frac{x^2 + 4x + 3}{(x+3)(x-2)}$$ , $\frac{x^2 + 4x + 3}{x^2 + x - 6}$ , OR $\frac{x^3 + 7x^2 + 15x + 9}{(x+3)(x^2 + x - 6)}$ $\rightarrow \frac{(x+1)(x+3)(x+3)}{(x+3)(x^2 + x - 6)}$ As in question one they can score this mark having 'invisible' brackets on line 1. - A1\* Further factorises and cancels (which may be implied) to complete the proof to reach the given answer $=\frac{(x+1)}{(x-2)}$ . All aspects including bracketing must be correct. If a cubic is formed then it needs to be correct. - (b) - B1 States either end of the range. Accept either y < 4, $y \le 4$ or y > 1, $y \ge 1$ with or without the y's. - B1 Correct range. Accept 1 < y < 4, 1 < g < 4, y > 1 and y < 4, (1,4), 1 < Range < 4, even 1 < f < 4, Do not accept 1 < x < 4, $1 < y \le 4$ , [1,4) etc. Special case, allow B1B0 for 1 < x < 4 - (c) - M1 Attempting to set g(x) = x, $g^{-1}(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{2}(x) = x$ . If $g^{-1}(x)$ has been used then a full attempt must have been made to make x the subject of the formula. A full attempt would involve cross multiplying, collecting terms, factorising and ending with division. As a result, it must be in the form $g^{-1}(x) = \frac{\pm 2x \pm 1}{\pm x \pm 1}$ Accept as evidence $$\frac{(x+1)}{(x-2)} = x$$ OR $\frac{x+1}{x-2} = \frac{\pm 2x \pm 1}{\pm x \pm 1}$ OR $\frac{\pm 2x \pm 1}{\pm x \pm 1} = x$ OR $\frac{\frac{x+1}{x-2} + 1}{\frac{x+1}{x-2} - 2} = x$ - A1 $x^2 3x 1 = 0$ or exact equivalent. The =0 may be implied by subsequent work. - dM1 For solving a 3TQ=0. It is dependent upon the first M being scored. Do not accept a method using factors unless it clearly factorises. Allow the answer written down awrt 3.30 (from a graphical calculator). - A1 $a \text{ or } x = \frac{3 + \sqrt{13}}{2}$ . Ignore any reference to $\frac{3 \sqrt{13}}{2}$ | Question<br>Number | | Scheme | Ma | rks | |--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------| | | {(1+ | $(kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^2 + \dots$ | | | | (a) | Either | $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes | M1 | | | | | leading to $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$ | A1 | (2) | | (b) | | Either $\frac{(-4)(-5)}{2!}$ or $(k)^2$ or $(kx)^2$ | M1 | [2] | | (6) | | Either $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ | M1 | | | | A = | $\frac{(-4)(-5)}{2!} \left(\frac{3}{2}\right)^2 $ $\Rightarrow A = \frac{45}{2}$ or 22.5 | A1 | | | | | | | [3]<br>5 | | | | Question Notes | | | | Note | In thi | s question ignore part labelling and mark part (a) and part (b) together. | | | | | Note | Writing down $\{(1+kx)^{-4}\}=1+(-4)(kx)+\frac{(-4)(-4-1)}{2!}(kx)^2+$ | | | | | | gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1 | | | | (a) | М1 | Award M1 for | | | | (-) | | • either writing down $(-4)k = -6$ or $4k = 6$ | | | | | | <ul> <li>or expanding (1 + kx)<sup>-4</sup> to give 1 + (-4)(kx)</li> </ul> | | | | | | • or writing down $(-4)kx = -6$ or $(-4k) = -6x$ or $-4kx = -6x$ | | | | | A1 | $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$ from no incorrect sign errors. | | | | | Note<br>Note | The M1 mark can be implied by a candidate writing down the correct value of $k$ .<br>Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent). | | | | | Note | Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4)^{-4}$ | 1)(kx)+ | ) | | | Note | $1 + (-4)(kx)$ leading to $(-4)k = 6$ leading to $k = \frac{3}{2}$ is M1A0. | | | | (b) | М1 | For either $\frac{(-4)(-4-1)}{2!}$ or $\frac{(-4)(-5)}{2!}$ or 10 or $(k)^2$ or $(kx)^2$ | | | | | М1 | Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(their k)^2$ | or | 10k <sup>2</sup> | | | Note | Candidates are allowed to use 2 instead of 2! | | | | | A1 | Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5 | | | | | Note | $A = \frac{90}{4}$ which has not been simplified is A0. | | | | | Note | Award A0 for $A = \frac{45}{2}x^2$ . | | | | | Note | Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$ | | | | | Note | $k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0. | | | | Question<br>Number | Scheme | Marks | | |--------------------|-----------------------------|-----------|-----| | (a) | y= f(x) (0, 11) and (6, 1) | | (2) | | <b>(b)</b> | (-6,1)<br>P(0,25) (0,25) | B1 | | | | <i>x</i> | | (3) | | (c) | One of $a = 2$ or $b = 6$ | B1 | | | | a=2 and $b=6$ | B1 | (2) | | | | (7 marks) | | B1 A W shape in any position. The arms of the W do not need to be symmetrical but the two bottom points must appear to be at the same height. Do not accept rounded W's. A correct sketch of y = f(|x|) would score this mark. B1 A W shape in quadrants 1 and 2 sitting on the x axis with P' = (0,11) and Q' = (6,1). It is not necessary to see them labelled. Accept 11 being marked on the y axis for P'. Condone P' = (11,0) marked on the correct axis, but Q' = (1,6) is B0 (b) B1 Score for a V shape in any position on the grid. The arms of the V do not need to be symmetrical. Do not accept rounded or upside down V's for this mark. B1 Q' = (-6,1). It does not need to be labelled but it must correspond to the minimum point on the curve and be in the correct quadrant. P' = (0, 25). It does not need to be labelled but it must correspond to the y intercept and the line must cross the axis. Accept 25 marked on the correct axis. Condone P' = (25, 0) marked on the positive y axis. Special case: A candidate who mistakenly sketches y = -2f(x) + 3 or y = -2f(-x) + 3 will arrive at one of the following. They can be awarded SC B1B0B0 (c) B1 Either states a = 2 or b = 6. This can be implied (if there are no stated answers given) by the candidate writing that y = ..|x-6|-1 or y = 2|x-..|-1. If they are both stated and written, the stated answer takes precedence. B1 States both a = 2 and b = 6 This can be implied by the candidate stating that y = 2|x-6|-1 If they are both stated and written, the stated answer takes precedence. | Question<br>Number | Scheme | Marks | |--------------------|---------------------------------------------------------------------------------------------------------------------|-----------| | (a) | $f(x) = \frac{4x+1}{x-2}, x > 2$ | | | | Applies $\frac{vu' - uv'}{v^2}$ to get $\frac{(x-2) \times 4 - (4x+1) \times 1}{(x-2)^2}$<br>= $\frac{-9}{(x-2)^2}$ | M1A1 | | | (x-2) | (3) | | (b) | $\frac{-9}{(x-2)^2} = -1 \Rightarrow x = \dots$ | M1 | | | (5,7) | A1, (2) | | | | (5 marks) | | Alt 1.(a) | $f(x) = \frac{4x+1}{x-2} = 4 + \frac{9}{x-2}$ | | | | Applies chain rule to get f'(x) = $A(x-2)^{-2}$ | M1 | | | $=-9(x-2)^{-2}=\frac{-9}{(x-2)^2}$ | A1, A1* | | | | (3) | M1 Applies the quotient rule to $f(x) = \frac{4x+1}{x-2}$ with u = 4x+1 and v = x-2. If the rule is quoted it must be correct. It may be implied by their u = 4x + 1, v = x - 2, u' = ..., v' = ... followed by $\frac{vu' - uv'}{v^2}$ . If neither quoted nor implied only accept expressions of the form $\frac{(x-2)\times A - (4x+1)\times B}{(x-2)^2}A$ , B > 0 allowing for a sign slip inside the brackets. Condone missing brackets for the method mark but not the final answer mark. Alternatively they could apply the product rule with u = 4x + 1 and $v = (x - 2)^{-1}$ . If the rule is quoted it must be correct. It may be implied by their u = 4x + 1, $v = (x - 2)^{-1}$ , u' = ..., v' = ... followed by vu' + uv'. If it is neither quoted nor implied only accept expressions of the form/ or equivalent to the form $(x-2)^{-1} \times C + (4x+1) \times D(x-2)^{-2}$ A third alternative is to use the Chain rule. For this to score there must have been some attempt to divide first to achieve $f(x) = \frac{4x+1}{x-2} = ... + \frac{...}{x-2}$ before applying the chain rule to get $$f'(x) = A(x-2)^{-2}$$ A1 A correct and unsimplified form of the answer. Accept $\frac{(x-2)\times 4-(4x+1)\times 1}{(x-2)^2}$ from the quotient rule Accept $\frac{4x-8-4x-1}{(x-2)^2}$ from the quotient rule even if the brackets were missing in line 1 Accept $(x-2)^{-1} \times 4 + (4x+1) \times -1(x-2)^{-2}$ or equivalent from the product rule Accept $9 \times -1(x-2)^{-2}$ from the chain rule A1\* Proceeds to achieve the given answer = $\frac{-9}{(x-2)^2}$ . Accept $-9(x-2)^{-2}$ All aspects must be correct including the bracketing. If they differentiated using the product rule the intermediate lines must be seen. Eg. $$(x-2)^{-1} \times 4 + (4x+1) \times -1(x-2)^{-2} = \frac{4}{(x-2)} - \frac{4x+1}{(x-2)^2} = \frac{4(x-2) - (4x+1)}{(x-2)^2} = \frac{-9}{(x-2)^2}$$ (b) M1 Sets $\frac{-9}{(x-2)^2} = -1$ and proceeds to $x = \dots$ The minimum expectation is that they multiply by $(x-2)^2$ and then either, divide by -1 before square rooting or multiply out before solving a 3TQ equation. A correct answer of x = 5 would also score this mark following $\frac{-9}{(x-2)^2} = -1$ as long as no incorrect work is seen. A1 x = 5 A1 (5, 7) or x = 5, y = 7. Ignore any reference to x = -1 (and y = 1). Do not accept 21/3 for 7 If there is an extra solution, x > 2, then withhold this final mark. | Question<br>Number | Scheme | Marks | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------| | (a) | $x = 8\frac{\pi}{8}\tan\left(2 \times \frac{\pi}{8}\right) = \pi$ | B1* | | (b) | $\frac{\mathrm{d}x}{\mathrm{d}y} = 8\tan 2y + 16y\sec^2(2y)$ | (1)<br>M1A1. | | | At $P \frac{dx}{dy} = 8 \tan 2 \frac{\pi}{8} + 16 \frac{\pi}{8} \sec^2 \left( 2 \times \frac{\pi}{8} \right) = \left\{ 8 + 4\pi \right\}$ | M1 | | | $\frac{y - \frac{\pi}{8}}{x - \pi} = \frac{1}{8 + 4\pi}$ , accept $y - \frac{\pi}{8} = 0.049(x - \pi)$ | M1A1 | | | $\Rightarrow (8+4\pi)y = x + \frac{\pi^2}{2}$ | A1 | | | | (6) | | | | (7 marks) | (a) B1\* Either sub $$y = \frac{\pi}{8}$$ into $x = 8y \tan(2y) \Rightarrow x = 8 \times \frac{\pi}{8} \tan(2 \times \frac{\pi}{8}) = \pi$ Or sub $$x = \pi$$ , $y = \frac{\pi}{8}$ into $x = 8y \tan(2y) \Rightarrow \pi = 8 \times \frac{\pi}{8} \tan\left(2 \times \frac{\pi}{8}\right) = \pi \times 1 = \pi$ This is a proof and therefore an expectation that at least one intermediate line must be seen, including a term in tangent. Accept as a minimum $$y = \frac{\pi}{8} \implies x = \pi \tan\left(\frac{\pi}{4}\right) = \pi$$ Or $$\pi = \pi \times \tan\left(\frac{\pi}{4}\right) = \pi$$ This is a given answer however, and as such there can be no errors. (b) - M1 Applies the product rule to $8y \tan 2y$ achieving $A \tan 2y + By \sec^2(2y)$ - A1 One term correct. Either $8 \tan 2y$ or $+16y \sec^2(2y)$ . There is no requirement for $\frac{dx}{dy} =$ - A1 Both lhs and rhs correct. $\frac{dx}{dy} = 8 \tan 2y + 16y \sec^2(2y)$ It is an intermediate line and the expression does not need to be simplified. Accept $$\frac{dx}{dy} = \tan 2y \times 8 + 8y \times 2 \sec^2(2y)$$ or $\frac{dy}{dx} = \frac{1}{\tan 2y \times 8 + 8y \times 2 \sec^2(2y)}$ or using implicit differentiation $1 = \tan 2y \times 8 \frac{dy}{dx} + 8y \times 2 \sec^2(2y) \frac{dy}{dx}$ M1 For fully substituting $y = \frac{\pi}{8}$ into their $\frac{dx}{dy}$ or $\frac{dy}{dx}$ to find a 'numerical' value Accept $\frac{dx}{dy}$ = awrt 20.6 or $\frac{dy}{dx}$ = awrt 0.05 as evidence M1 For a correct attempt at an equation of the tangent at the point $\left(\pi, \frac{\pi}{8}\right)$ . The gradient must be an inverted numerical value of their $\frac{dx}{dy}$ Look for $$\frac{y - \frac{\pi}{8}}{x - \pi} = \frac{1}{\text{numerical } \frac{dx}{dy}}$$ , Watch for negative reciprocals which is M0 If the form y = mx + c is used it must be a full method to find a 'numerical' value to c. A1 A correct equation of the tangent. Accept $$\frac{y-\frac{\pi}{8}}{x-\pi} = \frac{1}{8+4\pi}$$ or if $y = mx+c$ is used accept $m = \frac{1}{8+4\pi}$ and $c = \frac{\pi}{8} - \frac{\pi}{8+4\pi}$ Watch for answers like this which are correct $x - \pi = (8 + 4\pi) \left( y - \frac{\pi}{8} \right)$ Accept the decimal answers awrt 2sf y = 0.049x + 0.24, awrt 2sf 21y = x + 4.9, $\frac{y - 0.39}{x - 3.1} = 0.049$ Accept a mixture of decimals and $\pi$ 's for example $20.6\left(y - \frac{\pi}{8}\right) = x - \pi$ A1 Correct answer and solution only. $(8 + 4\pi)y = x + \frac{\pi^2}{2}$ Accept exact alternatives such as $4(2+\pi)y = x + 0.5\pi^2$ and because the question does not ask for a and b to be simplified in the form ay = x + b, accept versions like $$(8+4\pi)y = x + \frac{\pi}{8}(8+4\pi) - \pi$$ and $(8+4\pi)y = x + (8+4\pi)\left(\frac{\pi}{8} - \frac{\pi}{8+4\pi}\right)$ | $\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x}$ | M1 | |-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------| | $=\frac{1+\cos 2x}{}$ | M1 | | $=\frac{1+2\cos^2 x-1}{1+2\cos^2 x}$ | | | $= \frac{2\sin x \cos x}{2\sin x \cos x}$ | M1 A1 | | $= \frac{\cos x}{\sin x} = \cot x$ | A1* | | | (5 | | | | | | M1 | | | dM1, A1 | | | dM1 | | $\theta = 102.5^{\circ}$ | A1 | | | (5 | | | (10 marks) | | | $= \frac{1 + \cos 2x}{\sin 2x}$ $= \frac{1 + 2\cos^2 x - 1}{2\sin x \cos x}$ $= \frac{2\cos^2 x}{2\sin x \cos x}$ $= \frac{\cos x}{\cos x} = \cot x$ | M1 Writing $$\csc 2x = \frac{1}{\sin 2x}$$ and $\cot 2x = \frac{\cos 2x}{\sin 2x}$ or $\frac{1}{\tan 2x}$ M1 Writing the lhs as a single fraction $\frac{a+b}{c}$ . The denominator must be correct for their terms. M1 Uses the appropriate double angle formulae/trig identities to produce a fraction in a form containing no addition or subtraction signs. A form $\frac{p \times q}{s \times t}$ or similar A1 A correct intermediate line. Accept $\frac{2\cos^2 x}{2\sin x \cos x}$ or $\frac{2\sin x \cos x}{2\sin x \cos x \tan x}$ or similar This cannot be scored if errors have been made A1\* Completes the proof by cancelling and using either $\frac{\cos x}{\sin x} = \cot x$ or $\frac{1}{\tan x} = \cot x$ The cancelling could be implied by seeing $\frac{2}{2} \frac{\cos x}{\sin x} \frac{\cos x}{\cos x} = \cot x$ The proof cannot rely on expressions like $\cot = \frac{\cos}{\sin}$ (with missing x's) for the final A1 (b) M1 Attempt to use the solution to part (a) with $2x = 4\theta + 10 \Rightarrow$ to write or imply $\cot(2\theta \pm ...^{\circ}) = \sqrt{3}$ Watch for attempts which start $\cot \alpha = \sqrt{3}$ . The method mark here is not scored until the $\alpha$ has been replaced by $2\theta \pm ...^{\circ}$ Accept a solution from $\cot(2x \pm ...^{\circ}) = \sqrt{3}$ where $\theta$ has been replaced by another variable. 1 dM1 Proceeds from the previous method and uses $\tan ... = \frac{1}{\cot ...}$ and $$\arctan\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$$ to solve $2\theta \pm ... = 30^{\circ} \Rightarrow \theta = ..$ - A1 $\theta = 12.5^{\circ}$ or exact equivalent. Condone answers such as $x = 12.5^{\circ}$ - dM1 This mark is for the correct method to find a second solution to θ. It is dependent upon the first M only. Accept $$2\theta \pm ... = 180 + PV^{\circ} \Rightarrow \theta = ..^{\circ}$$ A1 $\theta = 102.5^{\circ}$ or exact equivalent. Condone answers such as $x = 102.5^{\circ}$ Ignore any solutions outside the range. This mark is withheld for any extra solutions within the range. If radians appear they could just lose the answer marks. So for example $$2\theta \pm ... = \frac{\pi}{6} (0.524) \Rightarrow \theta = ... \text{ is M1dM1A0}$$ followed by $$2\theta \pm ... = \pi + \frac{\pi}{6} \Rightarrow \theta = ... \, dM1A0$$ Special case 1: For candidates in (b) who solve $\cot(4\theta \pm ...^{\circ}) = \sqrt{3}$ the mark scheme is severe, so we are awarding a special case solution, scoring 00011. $$\cot(4\theta + \beta^{\circ}) = \sqrt{3} \Rightarrow 4\theta + \beta = 30^{\circ} \Rightarrow \theta = ...$$ is M0M0A0 where $\beta = 5^{\circ}$ or $10^{\circ}$ $\Rightarrow 4\theta + \beta = 210^{\circ} \Rightarrow \theta = ...$ can score M1A1 Special case. If $\beta = 5^{\circ}$ , $\theta = 51.25$ If $\beta = 10^{\circ}$ , $\theta = 50$ Special case 2: Just answers in (b) with no working scores 1 1 0 0 0 for 12.5 and 102.5 BUT $\cot(2\theta \pm 5^{\circ}) = \sqrt{3} \Rightarrow \theta = 12.5^{\circ}, 102.5^{\circ}$ scores all available marks. | Question<br>Number | Scheme | Marks | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------| | (a)Alt 1 | $\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{1}{\tan 2x}$ | 1 <sup>ST</sup> M1 | | | $= \frac{1}{2\sin x \cos x} + \frac{1 - \tan^2 x}{2\tan x}$ $= \frac{\tan x + (1 - \tan^2 x)\sin x \cos x}{2\sin x \cos x \tan x} \text{or} = \frac{2\tan x + 2(1 - \tan^2 x)\sin x \cos x}{4\sin x \cos x \tan x}$ $= \frac{\tan x + \sin x \cos x - \tan^2 x \sin x \cos x}{2\sin x \cos x \tan x}$ $= \frac{\tan x + \sin x \cos x - \tan x \sin^2 x}{2\sin x \cos x \tan x}$ $= \frac{\tan x (1 - \sin^2 x) + \sin x \cos x}{2\sin x \cos x \tan x}$ $= \frac{\tan x \cos^2 x + \sin x \cos x}{2\sin x \cos x \tan x}$ $= \frac{\tan x \cos^2 x + \sin x \cos x}{2\sin x \cos x \tan x}$ $= \frac{\sin x \cos x + \sin x \cos x}{2\sin x \cos x + \sin x \cos x}$ | 2 <sup>nd</sup> M1 | | | $ 2\sin x \cos x \tan x = \frac{2\sin x \cos x}{2\sin x \cos x \tan x} \text{ oe} $ $ = \frac{1}{-1} = \cot x $ | 3 <sup>rd</sup> M1A1<br>A1* (5) | | (a)Alt 2 | Example of how main scheme could work in a roundabout route $\csc 2x + \cot 2x = \cot x \Leftrightarrow \frac{1}{\sin 2x} + \frac{1}{\tan 2x} = \frac{1}{\tan x}$ | 1 <sup>st</sup> M1 | | | $\Leftrightarrow \tan 2x \tan x + \sin 2x \tan x = \sin 2x \tan 2x$ $\Leftrightarrow \frac{2 \tan x}{1 - \tan^2 x} \times \tan x + 2 \sin x \cos x \times \frac{\sin x}{\cos x} = 2 \sin x \cos x \times \frac{2 \tan x}{1 - \tan^2 x}$ | 2 <sup>nd</sup> M1 | | | $\Leftrightarrow \frac{2\tan^2 x}{1-\tan^2 x} + 2\sin^2 x = \frac{4\sin^2 x}{1-\tan^2 x}$ $\times (1-\tan^2 x) \Leftrightarrow 2\tan^2 x + 2\sin^2 x (1-\tan^2 x) = 4\sin^2 x$ $\Leftrightarrow 2\tan^2 x - 2\sin^2 x \tan^2 x = 2\sin^2 x$ | | | | $\Leftrightarrow 2 \tan^2 x (1 - \sin^2 x) = 2 \sin^2 x$ $\div 2 \tan^2 x \Leftrightarrow 1 - \sin^2 x = \cos^2 x$ As this is true, initial statement is true | 3 <sup>rd</sup> M1<br>A1<br>A1* | | | | (5) | | Question<br>Number | | Scheme | Marks | | | |--------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--| | rvanioei | $\frac{\mathrm{d}V}{\mathrm{d}t} =$ | $80\pi$ , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$ , | | | | | | ui | | M1 | | | | | | $\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi$ $\frac{\pm \alpha h \pm \beta, \ \alpha \neq 0, \beta \neq 0}{8\pi h + 16\pi}$ | A1 | | | | | $\left\{ \frac{\mathrm{d}V}{\mathrm{d}h} \right\}$ | $\times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \implies \left\{ (8\pi h + 16\pi) \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \right. \qquad \left( \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$ | M1 oe ¬ | | | | | $\left\{ \frac{\mathrm{d}h}{\mathrm{d}t} \right\}$ | $= \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow \left\{ \begin{array}{c} \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi} & \text{or } 80\pi + \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h} \end{array} \right.$ | MI de | | | | | When | $h=6, \left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right. = \left\{\frac{1}{8\pi(6)+16\pi}\times80\pi\right. \left\{=\frac{80\pi}{64\pi}\right\} \qquad \qquad \text{dependent on the previous M1 see notes}$ | dM1 | | | | | $\frac{\mathrm{d}h}{\mathrm{d}t} = 1$ | 1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ | | | | | | | | [5]<br>5 | | | | | Altern | trule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$ | | | | | | D in. | $u = 4\pi h \qquad v = h + 4$ | | | | | | Produc | et rule: $\begin{cases} \frac{du}{dt} = 4\pi & \frac{dv}{dt} = 1 \end{cases}$ | | | | | | | | M1 | | | | | $\frac{dr}{dh} =$ | $4\pi(h+4) + 4\pi h$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \beta \neq 0$ $4\pi(h+4) + 4\pi h$ | A1 | | | | | | | | | | | | Question Notes | | | | | | | M1 | An expression of the form $\pm \alpha h \pm \beta$ , $\alpha \neq 0$ , $\beta \neq 0$ . Can be simplified or un-simplified | a. | | | | | A1 | Correct simplified or un-simplified differentiation of $V$ .<br>eg. $8\pi h + 16\pi$ or $4\pi (h + 4) + 4\pi h$ or $8\pi (h + 2)$ or equivalent. | | | | | | Note | Some candidates will use the product rule to differentiate $V$ with respect to $h$ . (See Alt N | Iethod 1). | | | | | Note | $\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating | ng their V. | | | | | М1 | $\left(\text{Candidate's } \frac{dV}{dh}\right) \times \frac{dh}{dt} = 80\pi \text{ or } 80\pi \Rightarrow \text{Candidate's } \frac{dV}{dh}$ | | | | | | Note | Also allow 2 <sup>nd</sup> M1 for $\left( \text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80 \text{ or } 80 \div \text{Candidate's } \frac{dV}{dh}$ | | | | | | Note | Give 2 <sup>nd</sup> M0 for $\left(\text{Candidate's } \frac{dV}{dh}\right) \times \frac{dh}{dt} = 80 \pi t \text{ or } 80 k \text{ or } 80 k + \text{Candidate's } \frac{dV}{dt}$ | $\frac{dV}{dh}$ | | | | | dM1 | which is dependent on the previous M1 mark. | | | | | | | Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and $80\pi$ | (or 80) | | | | | A1 | 1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required). | | | | | | Note | $\frac{80\pi}{64\pi}$ as a final answer is A0. | | | | | | Note | Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives $64\pi$ but the final M1 mark can only be awar | ded if this | | | | | | is used as a quotient with $80\pi$ (or 80) | | | | | ks | Marks | Schomo | Question<br>Number | |---------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------| | (2) | M1,A1 | $P = \frac{800e^0}{1+3e^0}, = \frac{800}{1+3} = 200$ | (a) | | | M1,A1 | $250 = \frac{800e^{0.1t}}{1 + 3e^{0.1t}}$ $250(1 + 3e^{0.1t}) = 800e^{0.1t} \Rightarrow 50e^{0.1t} = 250, \Rightarrow e^{0.1t} = 5$ | (b) | | | M1<br>A1 | $t = \frac{1}{0.1} \ln(5)$ $t = 10 \ln(5)$ | | | (4) | | | | | | M1,A1 | $P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}} \Rightarrow \frac{dP}{dt} = \frac{(1 + 3e^{0.1t}) \times 800 \times 0.1e^{0.1t} - 800e^{0.1t} \times 3 \times 0.1e^{0.1t}}{(1 + 3e^{0.1t})^2}$ | (c) | | | M1,A1 | At $t=10$ $\frac{dP}{dt} = \frac{(1+3e) \times 80e - 240e^2}{(1+3e)^2} = \frac{80e}{(1+3e)^2}$ | | | (4) | | | | | (1)<br>marks) | B1 (11 man | $P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}} = \frac{800}{e^{-0.1t} + 3} \Rightarrow P_{\text{max}} = \frac{800}{3} = 266 \text{ . Hence P cannot be } 270$ | (d) | | 1 1 | | $P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}} = \frac{800}{e^{-0.1t} + 3} \Rightarrow P_{\text{max}} = \frac{800}{3} = 266 \text{ . Hence P cannot be } 270$ | (d) | M1 Sub t = 0 into P and use $e^0 = 1$ in at least one of the two cases. Accept $P = \frac{800}{1+3}$ as evidence A1 200. Accept this for both marks as long as no incorrect working is seen. (b) M1 Sub P=250 into $P = \frac{800e^{0.1t}}{1+3e^{0.1t}}$ , cross multiply, collect terms in $e^{0.1t}$ and proceed to $Ae^{0.1t} = B$ Condone bracketing issues and slips in arithmetic. If they divide terms by $e^{0.1t}$ you should expect to see $Ce^{-0.1t} = D$ A1 $e^{0.1t} = 5$ or $e^{-0.1t} = 0.2$ M1 Dependent upon gaining $e^{0.1t} = E$ , for taking ln's of both sides and proceeding to t=... Accept $e^{0.1t} = E \Rightarrow 0.1t = \ln E \Rightarrow t = ...$ It could be implied by t = awrt 16.1 A1 $t = 10 \ln(5)$ Accept exact equivalents of this as long as a and b are integers. Eg. $t = 5 \ln(25)$ is fine. M1Scored for a full application of the quotient rule and knowing that $$\frac{d}{dt}e^{0.1t} = ke^{0.1t}$$ and NOT $kte^{0.1t}$ If the rule is quoted it must be correct. It may be implied by their $u = 800e^{0.1t}$ , $v = 1 + 3e^{0.1t}$ , $u' = pe^{0.1t}$ , $v' = qe^{0.1t}$ followed by $$\frac{vu'-uv'}{v^2}$$ . If it is neither quoted nor implied only accept expressions of the form $$\frac{(1+3e^{0.1t})\times pe^{0.1t}-800e^{0.1t}\times qe^{0.1t}}{(1+3e^{0.1t})^2}$$ Condone missing brackets. You may see the chain or product rule applied to For applying the product rule see question 1 but still insist on $\frac{d}{dt}e^{0.1t} = ke^{0.1t}$ For the chain rule look for $$P = \frac{800e^{0.1t}}{1 + 3e^{0.1t}} = \frac{800}{e^{-0.1t} + 3} \Rightarrow \frac{dP}{dt} = 800 \times \left(e^{-0.1t} + 3\right)^{-2} \times -0.1e^{-0.1t}$$ $$\frac{dP}{dt} = \frac{(1+3e^{0.1t}) \times 800 \times 0.1e^{0.1t} - 800e^{0.1t} \times 3 \times 0.1e^{0.1t}}{(1+3e^{0.1t})^2}$$ M1 For substituting $$t = 10$$ into their $\frac{dP}{dt}$ , NOT $P$ Accept numerical answers for this. 2.59 is the numerical value if $\frac{dP}{dt}$ was correct A1 $$\frac{dP}{dt} = \frac{80e}{(1+3e)^2}$$ or equivalent such as $\frac{dP}{dt} = 80e(1+3e)^{-2}$ , $\frac{80e}{1+6e+9e^2}$ Note that candidates who substitute t = 10 before differentiation will score 0 marks (d) Accept solutions from substituting P=270 and showing that you get an unsolvable equation Eg. $$270 = \frac{800e^{0.1t}}{1 + 3e^{0.1t}} \Rightarrow -27 = e^{0.1t} \Rightarrow 0.1t = \ln(-27)$$ which has no answers. Eg. $$270 = \frac{800e^{0.1t}}{1 + 3e^{0.1t}} \Rightarrow -27 = e^{0.1t} \Rightarrow e^{0.1t} / e^x$$ is never negative Accept solutions where it implies the max value is 266.6 or 267. For example accept sight of $\frac{800}{3}$ , with a comment 'so it cannot reach 270', or a large value of t (t > 99) being substituted in to get 266.6 or 267 with a similar statement, or a graph drawn with an asymptote marked at 266.6 or 267 Do not accept exp's cannot be negative or you cannot ln a negative number evidence. without numerical Look for both a statement and a comment | Question<br>Number | Scheme | Marks | |--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------| | | $x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$ | | | | Main Scheme | | | (a) | $x = 4 \left( \cos t \cos \left( \frac{\pi}{6} \right) - \sin t \sin \left( \frac{\pi}{6} \right) \right) \qquad \qquad \cos \left( t + \frac{\pi}{6} \right) \to \cos t \cos \left( \frac{\pi}{6} \right) \pm \sin t \sin \left( \frac{\pi}{6} \right)$ | M1 oe | | | So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded $x$ (which is in terms of $t$ ) to $2\sin t$ | dM1 | | | $=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$ | | | | $=2\sqrt{3}\cos t$ * Correct proof | A1 * | | (a) | Alternative Method 1 | | | | $x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$ | M1 oe | | | $=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$ | | | | So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in x, y and t. | dM1 | | | $x + y = 2\sqrt{3}\cos t$ * Correct proof | A1 * | | | | [3] | | | Main Scheme | [6] | | | $(x+y)^2$ $(y)^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an | | | (b) | $\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's. | M1 | | | $\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$ | | | | $\Rightarrow (x+y)^2 + 3y^2 = 12 \qquad (x+y)^2 + 3y^2 = 12$ | A1 | | | $\{a=3, b=12\}$ | [2] | | (b) | Alternative Method 1 | | | | $(x+y)^2 = 12\cos^2 t = 12(1-\sin^2 t) = 12 - 12\sin^2 t$ | | | | Applies $\cos^2 t + \sin^2 t - 1$ to achieve an | ) (I | | | So, $(x + y)^2 = 12 - 3y^2$ Applies $\cos t + \sin t = 1$ to achieve an equation containing only x's and y's. | M1 | | | $\Rightarrow (x+y)^2 + 3y^2 = 12 \qquad (x+y)^2 + 3y^2 = 12$ | A1 | | (b) | Alternative Method 2 | [2] | | (0) | $\frac{Atternative Method 2}{(x+y)^2 = 12\cos^2 t}$ | | | | As $12\cos^2 t + 12\sin^2 t = 12$ | | | | then $(x + y)^2 + 3y^2 = 12$ | M1, A1 | | | (x · y) · 3y - 12 | | | | | [2] | | | Question Notes | | | | | | |---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | (a) | M1 | $\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$ | | | | | | | Note | If a candidate states $\cos(A+B) = \cos A \cos B \pm \sin A \sin B$ , but there is an error in its application | | | | | | | | then give M1. | | | | | | | | | | | | | | | | Awarding the dM1 mark which is dependent on the first method mark | | | | | | Main | Main dM1 Adds their expanded x (which is in terms of t) to $2 \sin t$<br>Note Writing $x + y =$ is not needed in the Main Scheme method. | | | | | | | | | | | | | | | Alt 1 | dM1 | Forms an equation in x, y and t. | | | | | | | A1* | Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors. | | | | | | | Note | ${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$ , by itself is M0M0A0. | | | | | | (b) M1 Applies $\cos^2 t + \sin^2 t = 1$ to | | Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's. | | | | | | , | A1 leading $(x + y)^2 + 3y^2 = 12$ | | | | | | | | | | | | | | | | SC | Award Special Case B1B0 for a candidate who writes down either | | | | | | | | • $(x+y)^2 + 3y^2 = 12$ from no working | | | | | | | | <ul> <li>a = 3, b = 12, but does not provide a correct proof.</li> </ul> | | | | | | | Note | Alternative method 2 is fine for M1 A1 | | | | | | | Note | Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0 | | | | | | | | | | | | | | | Note | Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$ | | | | | | | | • states $a = 3, b = 12$ | | | | | | | | • and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$ | | | | | | | | and there is no incorrect working | | | | | | | | would get M1A1 | | | | | | Question<br>Number | Scheme | Marks | |--------------------|---------------------------------------------------------------------------|-----------| | (a) | $R = \sqrt{20}$ | B1 | | | $\tan \alpha = \frac{4}{2} \Rightarrow \alpha = \text{awrt } 1.107$ | M1A1 (3) | | (b)(i) | $^{1}4 + 5R^{2} = 104$ | B1ft | | (ii) | $3\theta - 1.107' = \frac{\pi}{2} \Rightarrow \theta = \text{awrt } 0.89$ | M1A1 (3) | | (c )(i) | 4 | B1 | | (ii) | $3\theta$ – '1.107' = $2\pi \Rightarrow \theta$ = awrt 2.46 | M1A1 (3) | | | | (9 marks) | B1 Accept $R = \sqrt{20}$ or $2\sqrt{5}$ or awrt 4.47 Do not accept $R = \pm \sqrt{20}$ This could be scored in parts (b) or (c) as long as you are certain it is R M1 for sight of $\tan \alpha = \pm \frac{4}{2}$ , $\tan \alpha = \pm \frac{2}{4}$ . Condone $\sin \alpha = 4$ , $\cos \alpha = 2 \Rightarrow \tan \alpha = \frac{4}{2}$ If R is found first only accept $\sin \alpha = \pm \frac{4}{R}$ , $\cos \alpha = \pm \frac{2}{R}$ A1 $\alpha = \text{awrt } 1.107$ . The degrees equivalent 63.4° is A0. If a candidate does all the question in degrees they will lose just this mark. (b)(i) B1ft Either 104 or if R was incorrect allow for the numerical value of their $^{1}4+5R^{2}$ . Allow a tolerance of 1 dp on decimal R's. (b)(ii) M1 Using $3\theta \pm \text{their'} 1.107' = \frac{\pi}{2} \Rightarrow \theta = ...$ Accept $3\theta \pm \text{their '}1.107' = (2n+1)\frac{\pi}{2} \Rightarrow \theta = ..$ where *n* is an integer Allow slips on the lhs with an extra bracket such as $3(\theta \pm \text{their '}1.107') = \frac{\pi}{2} \Rightarrow \theta = ...$ The degree equivalent is acceptable $3\theta$ – their '63.4°' = 90° $\Rightarrow \theta$ = Do not allow mixed units in this question A1 awrt 0.89 radians or 51.1°. Do not allow multiple solutions for this mark. (c)(i) B1 4 (c)(ii) M1 Using $3\theta \pm \text{their'} 1.107' = 2\pi \Rightarrow \theta = ...$ Accept $3\theta \pm$ their '1.107' = $n\pi \Rightarrow \theta = ...$ where n is an integer, including 0 Allow slips on the lhs with an extra bracket such as $3(\theta \pm \text{their'}1.107') = 2\pi \Rightarrow \theta = ..$ The degree equivalent is acceptable $3\theta$ – their '63.4°' = 360° $\Rightarrow \theta$ = but Do not allow mixed units in this question A1 $\theta = \text{awrt } 2.46 \text{ radians or } 141.1^{\circ} \text{ Do not allow multiple solutions for this mark.}$ | Question<br>Number | Scheme | | Mar | ks | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|-----| | (i) | $\pm \alpha x e^{4x} - \int \beta e^{4x} \{dx\}, \alpha \neq 0, \ \beta > 0$ | | | | | | $\int xe^{4x} dx = \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$ | $\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$ | A1 | | | | $= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \left\{ + c \right\}$ | $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ | A1 | | | | | $\pm \lambda (2x-1)^{-2}$ | M1 | [3] | | (ii) | $\int \frac{8}{(2x-1)^3} dx = \frac{8(2x-1)^{-2}}{(2)(-2)} \{+c\}$ | $\frac{8(2x-1)^{-2}}{(2)(-2)}$ or equivalent. | | | | | $\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\}$ | {Ignore subsequent working}. | | [2] | | (iii) | $\frac{dy}{dx} = e^x \csc 2y \csc y$ $y = \frac{\pi}{6}$ at $x = 0$ | | | | | | Main Scheme | | | | | | $\int \frac{1}{\csc 2y \csc y} dy = \int e^x dx \qquad \text{or} \int \sin 2y \sin y dy$ | $= \int e^x dx$ | B1 oe | | | | $\int 2\sin y \cos y \sin y dy = \int e^x dx $ Appl | ying $\frac{1}{\csc 2y}$ or $\sin 2y \to 2\sin y \cos y$ | M1 | | | | | Integrates to give $\pm \mu \sin^3 y$ | M1 | | | | $\frac{2}{3}\sin^3 y = \mathrm{e}^x \left\{ + c \right\}$ | $2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ | A1 | | | | | $e^x \rightarrow e^x$ | B1 | | | | $\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c$ or $\frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ | Use of $y = \frac{\pi}{6}$ and $x = 0$ | M1 | | | | $\Rightarrow c = -\frac{11}{12}$ giving $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ | in an integrated equation containing $c$<br>$\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ | A1 | | | | [ 12] 5 3 1 12 | 3 , 12 | | [7] | | | Alternative Method 1 | | | | | | $\int \frac{1}{\csc 2y \csc y} dy = \int e^x dx \qquad \text{or} \int \sin 2y \sin y dy$ | $= \int e^x dx$ | B1 oe | | | | $\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx$ | $\sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y$ | M1 | | | | | Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ | M1 | | | | $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{+c\right\}$ | $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$ | A1 | | | | | $e^x \rightarrow e^x$ as part of solving their DE. | B1 | | | | $-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{or} -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1$ | = $c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing $c$ | M1 | | | | $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ | $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ | A1 | | | | | | | [7] | | | | | | 12 | | | | Question | 1 Notes | | | | | |-------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------|--|--|--| | (i) | M1 | Integration by parts is applied in the form $\pm$ | $\alpha x e^{4x} - \int \beta e^{4x} \{dx\}$ , where $\alpha \neq 0$ , $\beta > 0$ . | | | | | | | | (must be in this form). | • | | | | | | | A1 | $\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \left\{ dx \right\} \text{or equivalent.}$ | | | | | | | | A1 | A1 $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be un-simplified. | | | | | | | | isw | You can ignore subsequent working following on from a correct solution. | | | | | | | | sc | SPECIAL CASE: A candidate who uses $u = x$ , $\frac{dv}{dx} = e^{4x}$ , writes down the correct "by particular to the correct by the correct by particular to the correct by the correct by particular to the correct by c | | | | | | | | | formula,<br>but makes only one error when applying it o | an be awarded Special Case M1. | | | | | | (ii) | M1 | $\pm \lambda (2x-1)^{-2}$ , $\lambda \neq 0$ . Note that $\lambda$ can be 1. | | | | | | | | A1 | $\frac{8(2x-1)^{-2}}{(2)(-2)}$ or $-2(2x-1)^{-2}$ or $\frac{-2}{(2x-1)^2}$ | 1) <sup>-2</sup> or $\frac{-2}{(2x-1)^2}$ with/without + c. Can be un-simplified. | | | | | | | Note You can ignore subsequent working which follows from a correct answer. | | | | | | | | (iii) | B1 | Separates variables as shown. dy and dx should be in the correct positions, though this mark can | | | | | | | | | implied by later working. Ignore the integral signs. | | | | | | | | Note | Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$ or $\int \sin 2y \sin y = \int e^x$ | | | | | | | | M1 | $\frac{1}{\csc 2y} \to 2\sin y \cos y \text{or} \sin 2y \to 2\sin y \cos y \text{or} \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$ | | | | | | | | 241 | seen anywhere in the candidate's working to (iii). | | | | | | | | M1 | Integrates to give $\pm \mu \sin^3 y$ , $\mu \neq 0$ or $\pm \alpha \sin 3y \pm \beta \sin y$ , $\alpha \neq 0$ , $\beta \neq 0$ | | | | | | | | A1 | $2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y$ (with no extra terms) or integrates to give $-\frac{1}{2}(\frac{1}{3}\sin 3y - \sin y)$ | | | | | | | | B1 | Evidence that ex has been integrated to give ex as part of solving their DE. | | | | | | | | M1 | Some evidence of using both $y = \frac{\pi}{6}$ and $x = 0$ in an integrated or changed equation containing c. | | | | | | | | Note | that is mark can be implied by the correct value of $c$ . | | | | | | | | A1 | $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \text{or} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \text{or any equivalent correct answer.}$ | | | | | | | | Note You can ignore subsequent working which follows from a correct answer. Alternative Method 2 (Using integration by parts twice) | | | | | | | | | sin 2y sii | $\mathbf{n} y \mathrm{d} y = \int \mathbf{e}^x \mathrm{d} x$ | | B1 oe | | | | | | | | Applies integration by parts twice<br>to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$ | M2 | | | | | | $\frac{1}{3}\cos y \sin y$ | $2y - \frac{2}{3}\sin y \cos 2y = e^x \left\{ + c \right\}$ | $\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$ | A1 | | | | | | | | (simplified or un-simplified)<br>$e^x \rightarrow e^x$ as part of solving their DE. | B1 | | | | | | | | as in the main scheme | M1 | | | | | | $\frac{1}{3}\cos y \sin y$ | $2y - \frac{2}{3}\sin y \cos 2y = e^x - \frac{11}{12}$ | $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ | A1 | | | | | | | | | [7] | | | |