

Pure Mathematics 2 Practice Paper J12 MARK SCHEME

Question	Scheme	Marks
(a)	$S_{10} = \frac{10}{2} [2P + 9 \times 2T]$ or $\frac{10}{2} (P + [P + 18T])$	Ml
	e.g. $5[2P+18T]$ = (£) $(10P+90T)$ or (£) $10P+90T$ (*)	Alcso (2
(b)	Scheme 2: $S_{10} = \frac{10}{2} [2(P+1800)+9T] = \{10P+18000+45T\}$	MlAl
	10P + 90T = 10P + 18000 + 45T	Ml
	90T = 18000 + 45T T = 400 (only)	A1 (4
(c)	Scheme 2, Year 10 salary: $[a+(n-1)d=](P+1800)+9T$	Blft
	P + 1800 + "3600" = 29850	Ml
	P = (£) 24450	A1 (3
		9 marks
	Notes	
	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) MIAI for a full list seen (with + signs or written in columns) and no incorrect to	
List	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect v	
List	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect v Any missing terms is M0A0	working seen.
List (b)	 Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect vany missing terms is M0A0 1st M1 for attempting S₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 	working seen. ' + 1800 + 97')
(b)	 Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect wany missing terms is M0A0 1st M1 for attempting S₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S₁₀ using scheme 2 (needn't be multiplied) 	working seen. 2 + 1800 + 9 <i>T</i>) ed out)
	 Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working seen. 	working seen. 2 + 1800 + 9 <i>T</i>) ed out)
(b)	 Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be 	working seen. 2 + 1800 + 97) ed out) rking seen
(b)	 Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be Follow through their expressions provided P would disappear. 	working seen. 2 + 1800 + 9T) ed out) rking seen
(b)	 Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be 	working seen. 2 + 1800 + 9T) ed out) rking seen
(b)	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S ₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S ₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be Follow through their expressions provided P would disappear. 2nd A1 for using u ₁₀ for scheme 2. Can be 9T or follow through their value of	working seen. 2 + 1800 + 9T) ed out) rking seen e eliminated.
(b)	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S ₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S ₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be Follow through their expressions provided P would disappear. 2nd A1 for T = 400 Answer only (4/4)	working seen. 2 + 1800 + 9T) ed out) rking seen e eliminated.
(b)	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S ₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S ₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be Follow through their expressions provided P would disappear. 2nd A1 for using u ₁₀ for scheme 2. Can be 9T or follow through their value of M1 for forming an equation based on u ₁₀ for scheme 2 and using 29850 and T	working seen. 2 + 1800 + 9T) ed out) rking seen e eliminated.
(b)	Alcso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T) M1A1 for a full list seen (with + signs or written in columns) and no incorrect was Any missing terms is M0A0 1st M1 for attempting S ₁₀ for scheme 2 (allow missing () brackets e.g. 2P Using n = 10 and at least one of a or d correct. 1st A1 for a correct expression for S ₁₀ using scheme 2 (needn't be multiplied Allow M1A1 if they reach 10P + 18000 + 45T with no incorrect working is M1A1 2nd M1 for forming an equation using the two sums that would enable P to be Follow through their expressions provided P would disappear. 2nd A1 for using u ₁₀ for scheme 2. Can be 9T or follow through their value of M1 for forming an equation based on u ₁₀ for scheme 2 and using 29850 and	working seen. 2 + 1800 + 9T) ed out) rking seen e eliminated. f T d their value of

Question Number	Scheme	Marks
(a)	$\frac{1}{(2-5x)^2} = (2-5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2}$ (2)^{-2} or $\frac{1}{4}$	<u>B1</u>
	$= \left\{ \frac{1}{4} \right\} \left[1 + (-2)(**x) + \frac{(-2)(-3)}{2!}(**x)^2 + \dots \right]$ see notes	M1 A1ft
	$= \left\{ \frac{1}{4} \right\} \left[1 + (-2) \left(-\frac{5x}{2} \right) + \frac{(-2)(-3)}{2!} \left(-\frac{5x}{2} \right)^2 + \dots \right]$	
	$= \frac{1}{4} \left[1 + 5x; + \frac{75}{4}x^2 + \dots \right]$ See notes below!	
	$= \frac{1}{4} + \frac{5}{4}x; + \frac{75}{16}x^2 + \dots$	A1; A1 [5]
(b)	$\left\{\frac{2+kx}{(2-5x)^2}\right\} = (2+kx)\left(\frac{1}{4} + \frac{5}{4}x + \left\{\frac{75}{16}x^2 + \ldots\right\}\right)$ Can be implied by later work even in part (c).	M1
	x terms: $\frac{2(5x)}{4} + \frac{kx}{4} = \frac{7x}{4}$ giving, $10 + k = 7 \Rightarrow \underline{k} = -3$ $\underline{k} = -3$	A1
(c)	x^2 terms: $\frac{150x^2}{16} + \frac{5kx^2}{4}$	[2] M1
	So, $A = \frac{75}{8} + \frac{5(-3)}{4} = \frac{75}{8} - \frac{15}{4} = \frac{45}{8}$ $\frac{45}{8}$ or $\frac{5}{8}$ or $\frac{5}{8}$ or $\frac{5.625}{8}$	
		[2] 9
(a)	<u>B1</u> : $(2)^{-2}$ or $\frac{1}{4}$ outside brackets or $\frac{1}{4}$ as candidate's constant term in their binomial expansion.	
	M1: Expands to give a simplified or an un-simplified,	
	$1+(-2)(**x)$ or $(-2)(**x)+\frac{(-2)(-3)}{2!}(**x)^2$ or $1++\frac{(-2)(-3)}{2!}(**x)^2$, where	re **≠1.
	A1: A correct simplified or an un-simplified $1 + (-2)(**x) + \frac{(-2)(-3)}{2!}(**x)^2$ expansion with ca	andidate's
	follow through $(**x)$. Note that $(**x)$ must be consistent.	
	You would award B1M1A0 for $=\frac{1}{4}\left[\frac{1+(-2)\left(-\frac{5x}{2}\right)+\frac{(-2)(-3)}{2!}(-5x)^2+}{2!}\right]$ because ** is not	consistent.
	Invisible brackets $\left\{\frac{1}{4}\right\}\left[\begin{array}{c} 1+(-2)\left(-\frac{5x}{2}\right)+\frac{(-2)(-3)}{2!}\left(-\frac{5x^2}{2}\right)+\end{array}\right]$ is M1A0 unless recovered.	
	A1: For $\frac{1}{4} + \frac{5}{4}x$ (simplified fractions) or Also allow 0.25 + 1.25x or $\frac{1}{4} + 1\frac{1}{4}x$.	,
	Allow Special Case A1 for either SC: $\frac{1}{4}[1+5x;]$ or SC: $K[1+5x+\frac{75}{4}x^2+]$	<u></u>
	A1: Accept only $\frac{75}{16}x^2$ or $4\frac{11}{16}x^2$ or $4.6875x^2$	
	Alternative method: Candidates can apply an alternative form of the binomial expansion. (See	e next page).

(b) M1: Candidate writes down (2 + kα)(their part (a) answer, at least up to the term in x.)

$$(2 + kx)\left(\frac{1}{4} + \frac{5}{4}x + ...\right)$$
 or $(2 + kx)\left(\frac{1}{4} + \frac{5}{4}x + \frac{75}{16}x^2 + ...\right)$ are fine.

This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in x.

A1: k = -3

(c) M1: Multiplies out their $(2 + kx)\left(\frac{1}{4} + \frac{5}{4}x + \frac{75}{16}x^2 + ...\right)$ to give **exactly** two terms (or coefficients) in x^2 and attempts to find A using a numerical value of k.

A1: Either $\frac{45}{8}$ or $5\frac{5}{8}$ or 5.625 **Note:** $\frac{45}{8}x^2$ is A0.

Alternative method for part (a)

$$(2-5x)^{-2} = (2)^{-2} + (-2)(2)^{-3}(-5x); + \frac{(-2)(-3)}{2!}(2)^{-4}(-5x)^{2}$$

B1: $\frac{1}{4}$ or $(2)^{-2}$,

M1: Any two of three (un-simplified) terms correct.

A1: All three (un-simplified) terms correct.

Al:
$$\frac{1}{4} + \frac{5}{4}x$$

Al:
$$\frac{75}{16}x^2$$

Note: The terms in C need to be evaluated, so ${}^{-2}C_0(2)^{-2} + {}^{-2}C_1(2)^{-3}(-5x); + {}^{-2}C_2(2)^{-4}(-5x)^2$ without further working is B0M0A0.

Alternative method for parts (b) and (c)

$$(2 + kx) = (2 - 5x)^2 \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + ...\right)$$

$$(2 + kx) = (4 - 20x + 25x^2) \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + ...\right)$$

$$(2 + kx) = 2 + (7x - 10x) + \left(4Ax^2 - 35x^2 + \frac{25}{2}x^2\right)$$

Equate x terms: k = -3

Equate x^2 terms: $0 = 4A - 35 + \frac{25}{2} \Rightarrow 4A = \frac{45}{2} \Rightarrow A = \frac{45}{8}$

(b) M1: For
$$(2 + kx) = (4 \pm \lambda x + 25x^2) \left(\frac{1}{2} + \frac{7}{4}x + Ax^2 + ... \right)$$
, where $\lambda \neq 0$

A1: k = -3

(c) M1: Multiplies out to obtain three x² terms/coefficients, equates to 0 and attempts to find A.

A1: Either $\frac{45}{8}$ or $5\frac{5}{8}$ or 5.625 **Note:** $\frac{45}{8}x^2$ is A0.

Question No	Scheme	Marks
	(a) $\frac{d}{dx}(\ln(3x)) \to \frac{B}{x} \text{ for any constant } B$	M1
	Applying vu'+uv', $\ln(3x) \times 2x + x$ (b)	M1, A1 A1 (4
	Applying $\frac{vu'-uv'}{v^2}$ $\frac{x^3 \times 4\cos(4x) - \sin(4x) \times 3x^2}{x^6}$	M1 <u>A1+A1</u> A1
	$=\frac{4x\cos(4x)-3\sin(4x)}{x^4}$	A1
		(5
		(9 MARKS)

uestion lumber	Scheme	Marks
(a)	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}}\right\} \underline{2+6y\frac{dy}{dx}} + \left(\underline{6xy+3x^2\frac{dy}{dx}}\right) = \underline{8x}$	М1 <u>А1</u> <u>В1</u>
	$\left\{ \frac{dy}{dx} = \frac{8x - 2 - 6xy}{6y + 3x^2} \right\}$ not necessarily required.	
	At $P(-1,1)$, $m(T) = \frac{dy}{dx} = \frac{8(-1)-2-6(-1)(1)}{6(1)+3(-1)^2} = -\frac{4}{9}$	dM1 A1 es
(b)	So, $m(N) = \frac{-1}{-4} \left\{ = \frac{9}{4} \right\}$	M1
	N: $y-1=\frac{9}{4}(x+1)$	M1
	N: $9x - 4y + 13 = 0$	A1
(a)	M1: Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $3x^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).	
	A1: $(2x+3y^2) \rightarrow \left(\frac{2+6y}{dx}\right)$ and $(4x^2 \rightarrow 8x)$. Note: If an extra "sixth" term appears then	award A0.
	$\mathbf{B1:} 6x y + 3x^2 \frac{\mathrm{d}y}{\mathrm{d}x} .$	
	dM1: Substituting $x = -1$ and $y = 1$ into an equation involving $\frac{dy}{dx}$. Allow this mark if either	the numerat
	or denominator of $\frac{dy}{dx} = \frac{8x - 2 - 6xy}{6y + 3x^2}$ is substituted into or evaluated correctly.	
	If it is clear, however, that the candidate is intending to substitute $x = 1$ and $y = -1$, then award Candidates who substitute $x = 1$ and $y = -1$, will usually achieve $m(T) = -4$	1 MU.
	Note that this mark is dependent on the previous method mark being awarded.	
	A1: For $-\frac{4}{9}$ or $-\frac{8}{18}$ or -0.4 or awrt -0.44	
	If the candidate's solution is not completely correct, then do not give this mark.	
(b)	M1: Applies $m(N) = -\frac{1}{\text{their } m(T)}$.	
	M1: Uses $y-1=(m_N)(x-1)$ or finds c using $x=-1$ and $y=1$ and uses $y=(m_N)x+"c"$	
	Where $m_N = -\frac{1}{\text{their m(T)}}$ or $m_N = \frac{1}{\text{their m(T)}}$ or $m_N = -\text{their m(T)}$.	
	A1: $9x - 4y + 13 = 0$ or $-9x + 4y - 13 = 0$ or $4y - 9x - 13 = 0$ or $18x - 8y + 26 = 0$ etc.	
	Must be "=0". So do not allow $9x+13=4y$ etc.	
	Note: $m_N = -\left(\frac{6y + 3x^2}{8x - 2 - 6xy}\right)$ is MOM0 unless a numerical value is then found for m_N .	
	Alternative method for part (a): Differentiating with respect to y	
	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{y}}\times\right\} \underline{2\frac{dx}{dy}+6y} + \left(\underline{6xy\frac{dx}{dy}+3x^2}\right) = 8x\frac{dx}{dy}$	
	M1: Differentiates implicitly to include either $2\frac{dx}{dy}$ or $6xy\frac{dx}{dy}$ or $\pm kx\frac{dx}{dy}$. (Ignore $\left(\frac{dx}{dy} = \right)$).	
	A1: $(2x+3y^2) \rightarrow \left(2\frac{dx}{dy} + 6y\right)$ and $\left(4x^2 \rightarrow 8x\frac{dx}{dy}\right)$. Note: If an extra "sixth" term appears to	hen award A
	$\mathbf{B1:} 6x \ y + 3x^2 \frac{\mathrm{d}y}{\mathrm{d}x} \ .$	
	dM1 : Substituting $x = -1$ and $y = 1$ into an equation involving $\frac{dx}{dy}$ or $\frac{dy}{dx}$. Allow this mark if	either the
	4- 6-12-3	
	numerator or denominator of $\frac{dx}{dy} = \frac{6y + 3x^2}{8x - 2 - 6xy}$ is substituted into or evaluated correctly. If it is clear, however, that the candidate is intending to substitute $x = 1$ and $y = -1$, then award	

Candidates who substitute x = 1 and y = -1, will usually achieve m(T) = -4

Question Number	Scheme	Marks
(a)	$\int x \sin 3x dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x \left\{ dx \right\}$	M1 A1
	$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x \left\{ + c \right\}$	A1
(b)	$\int x^2 \cos 3x dx = \frac{1}{3} x^2 \sin 3x - \int \frac{2}{3} x \sin 3x \{ dx \}$	[3] M1 A1
	$= \frac{1}{3}x^2 \sin 3x - \frac{2}{3} \left(-\frac{1}{3}x \cos 3x + \frac{1}{9} \sin 3x \right) \ \left\{ + c \right\}$	A1 isw
	$\left\{ = \frac{1}{3}x^2 \sin 3x + \frac{2}{9}x \cos 3x - \frac{2}{27} \sin 3x \right\} $ Ignore subsequent working	[3]
(a)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct	
	where $u = x \to u' = 1$ and $v' = \sin 3x \to v = k \cos 3x$ (seen or implied), where k is a positive or negative constant. (Allow $k = 1$).	
	This means that the candidate must achieve $x(k\cos 3x) - \int (k\cos 3x)$, where k is a consistent cons	tant.
	If x^2 appears after the integral, this would imply that the candidate is applying integration by parts in direction, so M0.	n the wrong
	A1: $-\frac{1}{3}x\cos 3x - \int -\frac{1}{3}\cos 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.	
2221.000	A1: $-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x$ with/without + c. Can be un-simplified.	
(b)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct	direction,
	where $u = x^2 \to u' = 2x$ or x and $v' = \cos 3x \to v = \lambda \sin 3x$ (seen or implied), where λ is a positive constant. (Allow $\lambda = 1$).	ve or
	This means that the candidate must achieve $x^2(\lambda \sin 3x) - \int 2x(\lambda \sin 3x)$, where $u' = 2x$	
	or $x^2(\lambda \sin 3x) - \int x(\lambda \sin 3x)$, where $u' = x$.	
	If x^3 appears after the integral, this would imply that the candidate is applying integration by parts in direction, so M0.	n the wrong
	A1: $\frac{1}{3}x^2 \sin 3x - \int \frac{2}{3}x \sin 3x \{ dx \}$. Can be un-simplified. Ignore the $\{ dx \}$.	
	A1: $\frac{1}{3}x^2 \sin 3x - \frac{2}{3} \left(-\frac{1}{3}x \cos 3x + \frac{1}{9} \sin 3x \right)$ with/without + c, can be un-simplified.	
	You can ignore subsequent working here. Special Case: If the candidate scores the first two marks of M1A1 in part (b), then you can award	the final A1
	as a follow through for $\frac{1}{3}x^2 \sin 3x - \frac{2}{3}$ (their follow through part(a) answer).	

Question No	Scheme	Marks
	Uses the identity $cot^2(3\theta) = cosec^2(3\theta) - 1$ in $2cot^2(3\theta) = 7cosec(3\theta) - 5$	M1
	$2cosec^{2}(3\theta) - 7cosec(3\theta) + 3 = 0$	A1
	$(2cosec3\theta - 1)(cosec3\theta - 3) = 0$	dM1
	$cosec3\theta = 3$	A1
	$\theta = \frac{invsin(\frac{1}{3})}{3}, \ \frac{19.5^{\circ}}{3} = awrt \ 6.5^{\circ}$	ddM1, A1
	$\theta = \frac{180^{\circ} - invsin(\frac{1}{3})}{3}, 53.5^{\circ}$ Correct $2^{\rm nd}$ value	A1 aani,ai
	$\theta = \frac{360^{\circ} + invstn(\frac{1}{3})}{3}$ Correct 3 rd value	ddM1
	All 4 correct answers awrt 6.5°,53.5°,126.5 °or 173.5°	(10 marks)

Question No	Scheme	Marks
	$\left(\frac{dx}{dy}\right) = 2sec^2\left(y + \frac{\pi}{12}\right)$	M1,A1
	substitute $y = \frac{\pi}{4}$ into their $\frac{dx}{dy} = 2sec^2\left(\frac{\pi}{4} + \frac{\pi}{12}\right) = 8$	M1, A1
	When $y = \frac{\pi}{4}$. $x = 2\sqrt{3}$ awrt 3.46	B1
	$\left(y - \frac{\pi}{4}\right) = their \ m(x - their \ 2\sqrt{3})$	M1
	$(y - \frac{\pi}{4}) = -8(x - 2\sqrt{3})$ oe	A1 (7 marks)

Question Number	Scheme	Marks	
(a)	0.73508		
(4)	0.75500	B1 cao [1]	
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times \left[0 + 2 \left(\text{their } 0.73508 + 1.17157 + 1.02280 \right) + 0 \right]$	B1 <u>M1</u>	
	$= \frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \text{ (4 dp)}$ awrt 1.1504	A1 [3]	
(c)	$\{u = 1 + \cos x\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	<u>B1</u>	
	$\left\{ \int \frac{2\sin 2x}{(1+\cos x)} \mathrm{d}x \right. = \left\{ \int \frac{2(2\sin x \cos x)}{(1+\cos x)} \mathrm{d}x \right. $ $\sin 2x = 2\sin x \cos x$	В1	
	$= \int \frac{4(u-1)}{u} \cdot (-1) du \left\{ = 4 \int \frac{(1-u)}{u} du \right\}$	M1	
	$=4\int\left(\frac{1}{u}-1\right)\mathrm{d}u=4\left(\ln u-u\right)+c$	dM1	
	$= 4\ln(1 + \cos x) - 4(1 + \cos x) + c = 4\ln(1 + \cos x) - 4\cos x + k$ AG	A1 cso [5]	
(d)	$= \left[4\ln\left(1+\cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2}\right] - \left[4\ln\left(1+\cos 0\right) - 4\cos 0\right]$ Applying limits $x = \frac{\pi}{2}$ and $x = 0$ either way round.	M1	
	$= [4\ln 1 - 0] - [4\ln 2 - 4]$		
	±4(1 – ln 2) or		
	$= 4 - 4 \ln 2 $ { = 1.227411278} $\pm (4 - 4 \ln 2)$ or awrt ± 1.2 ,	A1	
	however found.		
	Error = $ (4 - 4\ln 2) - 1.1504 $ awrt ±0.077	A1 cso [3]	
	$=0.0770112776 = 0.077 (2sf)$ or awrt $\pm 6.3(\%)$	Ai cso [5]	
		12	
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.		
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196		
	M1: For structure of trapezium rule []; (0 can be implied).		
	A1: anything that rounds to 1.1504		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correct	tly	
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).		
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}$ (0 + 0) + 2(their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589).		
	Alternative method for part (b): Adding individual trapezia		
	Area $\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.150392325$		
	B1: $\frac{\pi}{9}$ and a divisor of 2 on all terms inside brackets.		
	8 M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2.		
	A1: anything that rounds to 1.1504		

Question No	Scheme	Marks
	(a) $\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$	M1A1
	$= \frac{\frac{sinA}{cosA} + sinB}{1 - \frac{sinAsinB}{cosAcosB}} $ (÷ cosAcosB)	MI
	$=\frac{tanA + tanB}{1 - tanAtanB}$	A1 *
	(b) $\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\tan\theta + \tan\frac{\pi}{6}}{1 - \tan\theta + \tan\frac{\pi}{6}}$	M1 (
	$=\frac{tan\theta+\frac{1}{\sqrt{3}}}{1-tan\theta\frac{1}{\sqrt{3}}}$	MI
	$=\frac{\sqrt{3}\tan\theta+1}{\sqrt{3-\tan\theta}}$	A1 *
	(c) $\tan\left(\theta + \frac{\pi}{6}\right) = \tan(\pi - \theta).$	M1
	$\left(\theta + \frac{\pi}{\pi}\right) = (\pi - \theta)$	dM1
	$\left(\theta + \frac{\pi}{6}\right) = (\pi - \theta)$ $\theta = \frac{5}{12}\pi$	ddM1 A1
	$\tan\left(\theta + \frac{\pi}{2}\right) = \tan(2\pi - \theta)$	dddM1
	$\tan\left(\theta + \frac{\pi}{6}\right) = \tan(2\pi - \theta)$ $\theta = \frac{11}{12}\pi$	A1
	12	
		(13 MARKS)

Question Number	Scheme	Marks
110111001	$x = 4\sin\left(t + \frac{\pi}{6}\right), y = 3\cos 2t, 0, t < 2\pi$	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4\cos\left(t + \frac{\pi}{6}\right), \frac{\mathrm{d}y}{\mathrm{d}t} = -6\sin 2t$	B1 B1
	So, $\frac{dy}{dx} = \frac{-6\sin 2t}{4\cos\left(t + \frac{\pi}{6}\right)}$	B1√ oe
		[3]
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies\right\} -6\sin 2t = 0$	M1 oe
	@ $t = 0$, $x = 4\sin\left(\frac{\pi}{6}\right) = 2$, $y = 3\cos 0 = 3 \rightarrow (2,3)$	М1
	@ $t = \frac{\pi}{2}$, $x = 4\sin\left(\frac{2\pi}{3}\right) = \frac{4\sqrt{3}}{2}$, $y = 3\cos \pi = -3 \rightarrow (2\sqrt{3}, -3)$	
	@ $t = \pi$, $x = 4\sin\left(\frac{7\pi}{6}\right) = -2$, $y = 3\cos 2\pi = 3 \rightarrow (-2, 3)$	
	$ (2) (x = \frac{3\pi}{2}, x = 4\sin\left(\frac{5\pi}{3}\right)) = \frac{4(-\sqrt{3})}{2}, (y = 3\cos 3\pi = -3) \rightarrow (-2\sqrt{3}, -3) $	A1A1A1
		[5] 8
(a)	B1: Either one of $\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right)$ or $\frac{dy}{dt} = -6\sin 2t$. They do not have to be simplified.	:
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. They do not have to be simplified.	
	Any or both of the first two marks can be implied. Don't worry too much about their notation for the first two B1 marks.	
	B1: Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}(\frac{dx}{dt})}$. Note: This is a follow through mark	·k.
	Alternative differentiation in part (a)	
	$x = 2\sqrt{3}\sin t + 2\cos t \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = 2\sqrt{3}\cos t - 2\sin t$	
	$y = 3(2\cos^2 t - 1) \implies \frac{\mathrm{d}y}{\mathrm{d}t} = 3(-4\cos t \sin t)$	
	or $y = 3\cos^2 t - 3\sin^2 t \implies \frac{dy}{dt} = -6\cos t \sin t - 6\sin t \cos t$	
	or $y = 3(1 - 2\sin^2 t) \Rightarrow \frac{dy}{dt} = 3(-4\cos t \sin t)$	

Question		
Number	Scheme	Marks
(a)	1 = A(5 - P) + BP Can be implied.	M1
	$A = \frac{1}{5}, B = \frac{1}{5}$ Either one.	A1
	giving $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$ See notes.	A1 cao, aef
		[3]
(b)	$\int \frac{1}{P(5-P)} \mathrm{d}P = \int \frac{1}{15} \mathrm{d}t$	B1
	$\frac{1}{5}\ln P - \frac{1}{5}\ln(5 - P) = \frac{1}{15}t \ (+c)$	M1* A1ft
	$\{t = 0, P = 1 \Rightarrow\}$ $\frac{1}{5}\ln 1 - \frac{1}{5}\ln(4) = 0 + c$ $\{\Rightarrow c = -\frac{1}{5}\ln 4\}$	dM1*
	eg: $\frac{1}{5} \ln \left(\frac{P}{5 - P} \right) = \frac{1}{15} t - \frac{1}{5} \ln 4$ Using any of the subtraction (or addition) laws for logarithms CORRECTLY	dM1*
	$\ln\left(\frac{4P}{5-P}\right) = \frac{1}{3}t$ eg: $\frac{4P}{5-P} = e^{\frac{1}{4}t}$ or eg: $\frac{5-P}{4P} = e^{\frac{-1}{3}t}$ Eliminate ln's correctly.	dM1*
	$P = \frac{5e^{\frac{1}{3}t}}{(4 + e^{\frac{1}{3}t})} \left\{ \frac{(\div e^{\frac{1}{3}t})}{(\div e^{\frac{1}{3}t})} \right\}$ Make P the subject.	dM1*
	$P = \frac{5}{(1 + 4e^{\frac{-1}{3}t})}$ or $P = \frac{25}{(5 + 20e^{\frac{-1}{3}t})}$ etc.	A1
		[8]
(c)	$1 + 4e^{-\frac{1}{3}t} > 1 \implies P < 5$. So population cannot exceed 5000.	B1
		[1] 12
(a)	M1: Forming a correct identity. For example, $1 = A(5 - P) + BP$. Note A and B not referred	
	A1: Either one of $A = \frac{1}{5}$ or $B = \frac{1}{5}$.	•
	A1: $\frac{\frac{1}{3}}{P} + \frac{\frac{1}{3}}{(5-P)}$ or any equivalent form, eg: $\frac{1}{5P} + \frac{1}{25-5P}$, etc. Ignore subsequent working	ng.
	This answer must be stated in part (a) only.	
	A1 can also be given for a candidate who finds both $A = \frac{1}{5}$ and $B = \frac{1}{5}$ and $\frac{A}{P} + \frac{B}{5 - P}$ is	s seen in their
	working.	
	Candidate can use 'cover-up' rule to write down $\frac{\frac{1}{5}}{P} + \frac{\frac{1}{5}}{(5-P)}$, as so gain all three marks.	
	Candidate cannot gain the marks for part (a) in part (b).	

B1: Separates variables as shown. dP and dt should be in the correct positions, though this mark can be (b) implied by later working. Ignore the integral signs.

M1*: Both ±λln P and ± μln(±5 ± P), where λ and μ are constants.

Or $\pm \lambda \ln mP$ and $\pm \mu \ln(n(\pm 5 \pm P))$, where λ , μ , m and n are constants.

Alft: Correct follow through integration of both sides from their $\int \frac{\lambda}{P} + \frac{\mu}{(5-P)} dP = \int K dt$

with or without +c

dM1*: Use of t = 0 and P = 1 in an integrated equation containing c

dM1*: Using ANY of the subtraction (or addition) laws for logarithms CORRECTLY.

dM1*: Apply logarithms (or take exponentials) to eliminate ln's CORRECTLY from their equation.

dM1*: A full ACCEPTABLE method of rearranging to make P the subject. (See below for examples!)

Al:
$$P = \frac{5}{(1+4e^{-\frac{1}{3}t})} \{ \text{ where } a = 5, b = 1, c = 4 \}.$$

Also allow any "integer" multiples of this expression. For example: $P = \frac{25}{(5 + 20e^{-3t})}$

Note: If the first method mark $(M1^*)$ is not awarded then the candidate cannot gain any of the six remaining marks for this part of the question

Note:
$$\int \frac{1}{P(5-P)} dP = \int 15 dt \implies \int \frac{1}{5} + \frac{1}{(5-P)} dP = \int 15 dt \implies \ln P - \ln(5-P) = 15t$$
 is B0M1A1ft.

 $\underline{dM1*for\ making\ P\ the\ subject}$ Note there are three type of manipulations here which are considered acceptable to make P the subject.

(1) M1 for
$$\frac{P}{5-P} = e^{\frac{1}{3}t} \Rightarrow P = 5e^{\frac{1}{3}t} - Pe^{\frac{1}{3}t} \implies P(1+e^{\frac{1}{3}t}) = 5e^{\frac{1}{3}t} \Rightarrow P = \frac{5}{(1+e^{-\frac{1}{3}t})}$$

(2) M1 for
$$\frac{P}{5-P} = e^{\frac{1}{5}t} \Rightarrow \frac{5-P}{P} = e^{\frac{1}{5}t} \Rightarrow \frac{5}{P} - 1 = e^{\frac{1}{5}t} \Rightarrow \frac{5}{P} = e^{\frac{1}{5}t} + 1 \Rightarrow P = \frac{5}{(1+e^{\frac{1}{5}t})}$$

(3) M1 for
$$P(5-P) = 4e^{\frac{1}{2}t} \Rightarrow P^2 - 5P = -4e^{\frac{1}{3}t} \Rightarrow \left(P - \frac{5}{2}\right)^2 - \frac{25}{4} = -4e^{\frac{1}{3}t}$$
 leading to $P = ...$

Note: The incorrect manipulation of $\frac{P}{5-P} = \frac{P}{5} - 1$ or equivalent is awarded this dM0*.

B1: $1 + 4e^{-\frac{1}{3}t} > 1$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000. (c)

B1 can be awarded for $5 + 20e^{-\frac{1}{3}t} > 5$ and P < 5 and a conclusion relating population (or even P) or meerkats to 5000.

B1 can only be obtained if candidates have correct values of a and b in their $P = \frac{a}{(b + ce^{-\frac{1}{3}t})}$

Award B0 for: As $t \to \infty$, $e^{-\frac{1}{3}t} \to 0$. So $P \to \frac{5}{(1+0)} = 5$, so population cannot exceed 5000,

unless the candidate also proves that $P = \frac{5}{(1 + 4e^{\frac{-1}{3}t})}$ oe. is an increasing function.

If unsure here, then send to review!

B1M1*A1: as before for $\frac{1}{5} \ln P - \frac{1}{5} \ln (5 - P) = \frac{1}{15} t \ (+c)$

Award 3rd M1 for $\ln\left(\frac{P}{5-P}\right) = \frac{1}{3}t + c$ Award 4th M1 for $\frac{P}{5-P} = Ae^{\frac{1}{5}t}$ Award 2nd M1 for $t = 0, P = 1 \implies \frac{1}{5-1} = Ae^{0} \quad \left\{ \implies A = \frac{1}{4} \right\}$

 $\frac{P}{5-P} = \frac{1}{4} e^{\frac{1}{3}t}$

then award the final M1A1 in the same way.