Name:

## Pure

## Mathematics 2

## Advanced Level



## Practice Paper J12

## Time: 2 hours

## Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit


## Question 1

A company offers two salary schemes for a 10-year period, Year 1 to Year 10 inclusive.

Scheme 1: Salary in Year 1 is $£ P$.
Salary increases by $£(2 T)$ each year, forming an arithmetic sequence.

Scheme 2: Salary in Year 1 is $£(P+1800)$.
Salary increases by $£ T$ each year, forming an arithmetic sequence.
(a) Show that the total earned under Salary Scheme 1 for the 10-year period is

$$
\begin{equation*}
£(10 P+90 T) \tag{2}
\end{equation*}
$$

For the 10 -year period, the total earned is the same for both salary schemes.
(b) Find the value of $T$.

For this value of $T$, the salary in Year 10 under Salary Scheme 2 is Â£29 850
(c) Find the value of $P$.

## Question 2

(a) Expand

$$
\begin{equation*}
\frac{1}{(2-5 x)^{2}}, \quad|x|<\frac{2}{5} \tag{5}
\end{equation*}
$$

in ascending powers of $x$, up to and including the term in $x^{2}$, giving each term as a simplified fraction. Given that the binomial expansion of

$$
\begin{aligned}
& \frac{2+k x}{(2-5 x)^{2}},|x|<\frac{2}{5} \quad \text { is } \\
& \frac{1}{2}+\frac{7}{4} x+A x^{2}+\ldots
\end{aligned}
$$

(b) find the value of the constant $k$,
(c) find the value of the constant $A$.

## Question 3

Differentiate with respect to $x$, giving your answer in its simplest form,
(a) $x^{2} \ln (3 x)$
(b) $\frac{\sin 4 x}{x^{3}}$

## Question 4

The curve $C$ has the equation $2 x+3 y^{2}+3 x^{2} y=4 x^{2}$.
The point $P$ on the curve has coordinates $(-1,1)$.
(a) Find the gradient of the curve at $P$.
(b) Hence find the equation of the normal to $C$ at $P$, giving your answer in the form $a x+b y+c=0$, where
$a, b$ and $c$ are integers.

## Question 5

(a) Use integration by parts to find $\int x \sin 3 x d x$.
(b) Using your answer to part (a), find $\int x^{2} \cos 3 x d x$.

## Question 6

Solve, for $0 \leqslant \theta \leqslant 180^{\circ}$,

$$
2 \cot ^{2} 3 \theta=7 \operatorname{cosec} 3 \theta-5
$$

Give your answers in degrees to 1 decimal place.

## Question 7

The point $P$ is the point on the curve $x=2 \tan \left(y+\frac{\pi}{12}\right)$ with $y$-coordinate $\frac{\pi}{4}$.
Find an equation of the normal to the curve at $P$.

## Question 8



Figure 3

Figure 3 shows a sketch of the curve with equation $y=\frac{2 \sin 2 x}{(1+\cos x)}, 0 \leqslant x \leqslant \frac{\pi}{2}$.
The finite region $R$, shown shaded in Figure 3, is bounded by the curve and the $x$-axis.
The table below shows corresponding values of $x$ and $y$ for $y=\frac{2 \sin 2 x}{(1+\cos x)}$

| $x$ | 0 | $\frac{\pi}{8}$ | $\frac{\pi}{4}$ | $\frac{3 \pi}{8}$ | $\frac{\pi}{2}$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $y$ | 0 |  | 1.17157 | 1.02280 | 0 |

(a) Complete the table above giving the missing value of $y$ to 5 decimal places.
(b) Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the area of $R$, giving
your answer to 4 decimal places.
(c) Using the substitution $u=1+\cos x$, or otherwise, show that

$$
\int \frac{2 \sin 2 x}{(1+\cos x)} \mathrm{d} x=4 \ln (1+\cos x)-4 \cos x+k
$$

where $k$ is a constant.
(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

## Question 9

(a) Starting from the formulae for $\sin (A+B)$ and $\cos (A+B)$, prove that

$$
\begin{equation*}
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \tag{4}
\end{equation*}
$$

(b) Deduce that

$$
\begin{equation*}
\tan \left(\theta+\frac{\pi}{6}\right)=\frac{1+\sqrt{ } 3 \tan \theta}{\sqrt{3}-\tan \theta} \tag{3}
\end{equation*}
$$

(c) Hence, or otherwise, solve, for $0 \leqslant \theta \leqslant \pi$,

$$
1+\sqrt{ } 3 \tan \theta=(\sqrt{ } 3-\tan \theta) \tan (\pi-\theta)
$$

Give your answers as multiples of $\pi$.

## Question 10



Figure 2

Figure 2 shows a sketch of the curve $C$ with parametric equations

$$
x=4 \sin \left(t+\frac{\pi}{6}\right), \quad y=3 \cos 2 t, \quad 0 \leqslant t<2 \pi
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $t$.

Find the coordinates of all the points on $C$ where $\frac{\mathrm{d} y}{\mathrm{dx}}=0$

## Question 11

(a) Express $\frac{1}{P(5-P)}$ in partial fractions.

A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{15} P(5-P), \quad t \geq 0
$$

where $P$, in thousands, is the population of meerkats and $t$ is the time measured in years since the study began.

Given that when $t=0, P=1$,
(b) solve the differential equation, giving your answer in the form,

$$
P=\frac{a}{b+c \mathrm{e}^{-\frac{1}{3} t}}
$$

where $a, b$ and $c$ are integers.
(c) Hence show that the population cannot exceed 5000 .

