Name:

Total Marks:

Pure

Mathematics 2

Advanced Level

Practice Paper J12

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

A company offers two salary schemes for a 10-year period, Year 1 to Year 10 inclusive.

Scheme 1:	Salary in Year 1 is £ <i>P</i> .			
	Salary increases by $\pounds(2T)$ each year, forming an arithmetic sequence.			
Scheme 2:	Salary in Year 1 is $\pounds(P + 1800)$.			
	Salary increases by $\pounds T$ each year, forming an arithmetic sequence.			
(a) Show tha	at the total earned under Salary Scheme 1 for the 10-year period is			
	£(10P + 90T)	(2)		
For the 10-y	rear period, the total earned is the same for both salary schemes.			
(b) Find the	value of <i>T</i> .	(4)		
For this value of T, the salary in Year 10 under Salary Scheme 2 is \hat{A} £29 850				
(c) Find the	value of <i>P</i> .	(3)		
		(Total 9 marks)		

(a) Expand

$$\frac{1}{\left(2-5x\right)^2}, \quad \left|x\right| < \frac{2}{5}$$

in ascending powers of x, up to and including the term in x^2 , giving each term as a simplified fraction. (5) Given that the binomial expansion of

$$\frac{2+kx}{(2-5x)^2}, |x| < \frac{2}{5}$$
 is
$$\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots$$

(b) find the value of the constant *k*,

(c) find the value of the constant A.

(2) (Total 9 marks)

(2)

Differentiate with respect to x, giving your answer in its simplest form, (a) $x^2 \ln(3x)$	(4)
(b) $\frac{\sin 4x}{x^3}$	(5) (Total 9 marks)
Question 4	
The curve <i>C</i> has the equation $2x + 3y^2 + 3x^2 y = 4x^2$.	
The point P on the curve has coordinates (-1, 1).	
The point <i>P</i> on the curve has coordinates (-1 , 1). (a) Find the gradient of the curve at <i>P</i> .	(5)
(a) Find the gradient of the curve at <i>P</i> .	
(a) Find the gradient of the curve at <i>P</i>.(b) Hence find the equation of the normal to <i>C</i> at <i>P</i>, giving your answer in	the form $ax + by + c = 0$, where
(a) Find the gradient of the curve at <i>P</i>.(b) Hence find the equation of the normal to <i>C</i> at <i>P</i>, giving your answer in	the form $ax + by + c = 0$, where (3)
 (a) Find the gradient of the curve at <i>P</i>. (b) Hence find the equation of the normal to <i>C</i> at <i>P</i>, giving your answer in <i>a</i>, <i>b</i> and <i>c</i> are integers. 	the form $ax + by + c = 0$, where (3)
 (a) Find the gradient of the curve at <i>P</i>. (b) Hence find the equation of the normal to <i>C</i> at <i>P</i>, giving your answer in <i>a</i>, <i>b</i> and <i>c</i> are integers. 	the form ax + by + c = 0, where (3) (Total 8 marks)

Solve, for $0 \leq \theta \leq 180^{\circ}$, $2\cot^2 3\theta = 7 \csc 3\theta - 5$ Give your answers in degrees to 1 decimal place. (Total 7 marks)

(7)

The point *P* is the point on the curve $x = 2\tan\left(y + \frac{\pi}{12}\right)$ with *y*-coordinate $\frac{\pi}{4}$. Find an equation of the normal to the curve at *P*.

(7)

Question 8

Figure 3 shows a sketch of the curve with equation $y = \frac{2 \sin 2x}{(1 + \cos x)}, \ 0 \le x \le \frac{\pi}{2}$

The finite region *R*, shown shaded in Figure 3, is bounded by the curve and the *x*-axis.

 $2\sin 2x$

The table below shows corresponding values of x and y for $y = (1 + \cos x)$

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving

your answer to 4 decimal places.

(c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, \mathrm{d}x = 4\ln(1+\cos x) - 4\cos x + k$$

where k is a constant.

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures. (3)

(Total 12 marks)

(1)

(3)

(5)

(a) Starting from the formulae for sin (A + B) and cos (A + B), prove that

$$\tan\left(A+B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{4}$$

(b) Deduce that

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3}\tan\theta}{\sqrt{3 - \tan\theta}} \tag{3}$$

(c) Hence, or otherwise, solve, for $0 \leqslant \theta \leqslant \pi$,

$$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan (\pi - \theta)$$

Give your answers as multiples of π .

(Total 13 marks)

(6)

Question 10

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4\sin\left(t + \frac{\pi}{6}\right), \quad y = 3\cos 2t, \quad 0 \le t < 2\pi$$
dy

dy

(a) Find an expression for \overline{dx} in terms of *t*.

Find the coordinates of all the points on *C* where dx = 0

(Total 8 marks)

(3)

(5)

(a) Express
$$\frac{1}{P(5-P)}$$
 in partial fractions.

A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{15}P(5-P), \qquad t \ge 0,$$

where P, in thousands, is the population of meerkats and t is the time measured in years since the study began.

Given that when t = 0, P = 1,

(b) solve the differential equation, giving your answer in the form,

$$P = \frac{a}{b + c e^{-\frac{1}{3}t}}$$

where *a*, *b* and *c* are integers.

(c) Hence show that the population cannot exceed 5000.

TOTAL FOR PAPER IS 100 MARKS

(3)

(8)

(1)