

Pure Mathematics 2 Practice Paper M13 MARK SCHEME

Question Number	cheme			
(a)	$600 = 200 + (N-1)20 \Rightarrow N =$	Use of 600 with a correct formula in an attempt to find N. A correct formula could be implied by a correct answer.	M1	
	N = 21	cso	A1	
	Accept correct an	swer only.		
	$\frac{600 = 200 + 20N \implies N = 20 \text{ is}}{\frac{600 - 200}{20}} = 20 : N = 21 \text{ is M1A}$	1 (correct formula implied)		
	Listing: All terms must be listed up to	•		
	A solution that scores 2 if fully	correct and 0 otherwise.		
				(2
(b)	Look for an A $S = \frac{21}{2}(2 \times 200 + 20 \times 20) \text{ or } \frac{21}{2}(200 + 600)$ or $S = \frac{20}{2}(2 \times 200 + 19 \times 20) \text{ or } \frac{20}{2}(200 + 580)$ $(= 8400 \text{ or } 7800)$ Then for the cons	M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (a) where $3 < N < 52$ and $a = 200$ and $d = 20$. A1: Any correct un-simplified numerical expression with $n = 20$ or $n = 21$ (No follow through here)	M1A1 M1A1ft	
	So total is 27000	Cao	A1	
	Note that for the constant terms, they may	correctly use an AP sum with $d = 0$.		
	There are no marks in (b)	for just finding S52		
				(5
				[7
	If they obtain $N = 20$ in (a) $(0/2)$ at $S = \frac{20}{2}(2 \times 200 + 19 \times 20) + 32 \times 600$ allow them to 'recover' and so Similarl If they obtain $N = 22$ in (a) $(0/2)$ at $S = \frac{21}{2}(2 \times 200 + 20 \times 20) + 31 \times 600$ allow them to 'recover' and so	0 = 7800 + 19 200 = 27 000 score full marks in (b) y nd then in (b) proceed with, 0 = 8400 + 18 600 = 27 000		

Question Number	Scheme		Marks
(a)	$\left\{ \sqrt{\left(\frac{1+x}{1-x}\right)} \right\} = (1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$	$(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$	B1
	$= \left(1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \dots\right) \times \left(1 + \left(-\frac{1}{2}\right)(-x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-x)^2 + \dots\right)$	See notes	M1 A1 A1
	$= \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right) \times \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \dots\right)$		
	$= 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{1}{2}x + \frac{1}{4}x^2 - \frac{1}{8}x^2 + \dots$	See notes	M1
	$= 1 + x + \frac{1}{2}x^2$	Answer is given in the question.	A1 *
(b)	$\sqrt{\left(\frac{1+\left(\frac{1}{26}\right)}{1-\left(\frac{1}{26}\right)}\right)} = 1 + \left(\frac{1}{26}\right) + \frac{1}{2}\left(\frac{1}{26}\right)^2$		[6] M1
	ie: $\frac{3\sqrt{3}}{5} = \frac{1405}{1352}$		B1
	so, $\sqrt{3} = \frac{7025}{4056}$	7025 4056	A1 cao
			[3] 9
	Notes for Question		
(a)	B1 : $(1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$ or $\sqrt{(1+x)}(1-x)^{-\frac{1}{2}}$ seen or implied. (Also allow).
	M1: Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simple	ified,	
	Eg: $1 + \frac{1}{2}x$ or $+\left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$		
	or expands $(1-x)^{-\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified	fied,	
	Eg: $1 + \left(-\frac{1}{2}\right)(-x)$ or $+\left(-\frac{1}{2}\right)(-x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x)^2$ or $1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-x)^2$	$\frac{\frac{1}{2}(-\frac{3}{2})}{2!}(-x)^2$	
	Also allow: $1 + \dots + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(x)^2$ for M1.		
	 A1: At least one binomial expansion correct (either un-simplified or simple A1: Two binomial expansions are correct (either un-simplified or simplified Note: Candidates can give decimal equivalents when expanding out their beautiful M1: Multiplies out to give 1, exactly two terms in x and exactly three terms A1: Candidate achieves the result on the exam paper. Make sure that their 	ed). (ignore x^3 and x^4 binomial expansions. as in x^2 .	
	Special Case: Award SC FINAL M1A1 for a correct $\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right)$) (2 0	,
	multiplied out with no errors to give either $1 + x + \frac{3}{8}x^2 + \frac{1}{4}x^2 - \frac{1}{8}x^2$ or	2 0 2	
	$1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{4}x^2$ or $1 + \frac{1}{2}x + \frac{5}{8}x^2 + \frac{1}{2}x - \frac{1}{8}x^2$ leading to the	e correct answer of	$1+x+\frac{1}{2}x^2.$

	Notes for Question Continued	
(a) ctd	Note: If a candidate writes down either $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$ or $(1-x)^{-\frac{1}{2}} = 1 + \frac{1}{2}x + \dots$	$\frac{3}{8}x^2 +$
	with no working then you can award 1 st M1, 1 st A1. Note: If a candidate writes down both correct binomial expansions with no working, then you can 1 st M1, 1 st A1, 2 nd A1.	
(b)	M1: Substitutes $x = \frac{1}{26}$ into both sides of $\sqrt{\left(\frac{1+x}{1-x}\right)}$ and $1+x+\frac{1}{2}x^2$	
	B1: For sight of $\sqrt{\frac{27}{25}}$ (or better) and $\frac{1405}{1352}$ or equivalent fraction	
	Eg: $\frac{3\sqrt{3}}{5}$ and $\frac{1405}{1352}$ or $0.6\sqrt{3}$ and $\frac{1405}{1352}$ or $\frac{3\sqrt{3}}{5}$ and $1\frac{53}{1352}$ or $\sqrt{3}$ and $\frac{5}{3}\left(\frac{1405}{1352}\right)$	
	are fine for B1.	
	A1: $\frac{7025}{4056}$ or any equivalent fraction, eg: $\frac{14050}{8112}$ or $\frac{182650}{105456}$ etc.	
	Special Case: Award SC: M1B1A0 for $\sqrt{3} \approx 1.732001972$ or truncated 1.732001 or awrt 1.73	32002.
	Note that $\frac{7025}{4056} = 1.732001972$ and $\sqrt{3} = 1.732050808$	
Aliter (a) Way 2	$ \left\{ \sqrt{\frac{1+x}{1-x}} = \sqrt{\frac{(1+x)(1-x)}{(1+x)(1-x)}} = \sqrt{\frac{(1-x^2)}{(1-x)^2}} = \right\} = (1-x^2)^{\frac{1}{2}}(1-x)^{-1} $ $(1-x^2)^{\frac{1}{2}}(1-x)^{-1}$	B1
	$= \left(1 + \left(\frac{1}{2}\right)(-x^2) + \dots\right) \times \left(1 + (-1)(-x) + \frac{(-1)(-2)}{2!}(-x)^2 + \dots\right)$ See notes	M1A1A1
	$= \left(1 - \frac{1}{2}x^2 + \dots\right) \times \left(1 + x + x^2 + \dots\right)$	
	$=1+x+x^2-\frac{1}{2}x^2$ See notes	M1
	$= 1 + x + \frac{1}{2}x^{2}$ Answer is given in the question.	A1 *
Aliter	B1 : $(1-x^2)^{\frac{1}{2}}(1-x)^{-1}$ seen or implied.	[6]
(a) Way 2	M1: Expands $(1-x^2)^{\frac{1}{2}}$ to give both terms simplified or un-simplified, $1+\left(\frac{1}{2}\right)(-x^2)$	
	or expands $(1-x)^{-1}$ to give any 2 out of 3 terms simplified or un-simplified,	
	Eg: $1 + (-1)(-x)$ or $+(-1)(-x) + \frac{(-1)(-2)}{2!}(-x)^2$ or $1 + \dots + \frac{(-1)(-2)}{2!}(-x)^2$	
	A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and	
	A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4	terms)
	 M1: Multiplies out to give 1, exactly one term in x and exactly two terms in x². A1: Candidate achieves the result on the exam paper. Make sure that their working is sound. 	

	Notes for Question Continued	
Aliter (a) Way 3	$\left\{ \sqrt{\left(\frac{1+x}{1-x}\right)} = \sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}} = \right\} = (1+x)(1-x^2)^{-\frac{1}{2}} $ $(1+x)(1-x^2)^{-\frac{1}{2}}$	B1
	$= (1+x)\left(1+\frac{1}{2}x^2+\ldots\right)$ Must follow on from above.	M1A1A1
	$=1+x+\frac{1}{2}x^2$	dM1A1
	Note: The final M1 mark is dependent on the previous method mark for Way 3.	
Aliter (a) Way 4	Assuming the result on the Question Paper. (You need to be convinced that a candidate is applying this method before you apply the Mark Scheme for Way 4).	
	$\left\{ \sqrt{\left(\frac{1+x}{1-x}\right)} = \frac{\sqrt{(1+x)}}{\sqrt{(1-x)}} = 1+x+\frac{1}{2}x^2 \right\} \Rightarrow (1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$	B1
	$(1+x)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \dots \left\{ = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots \right\} ,$	M1A1A1
	$\left(1-x\right)^{\frac{1}{2}} = 1 + \left(\frac{1}{2}\right)(-x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(-x)^2 + \dots \\ = 1 - \frac{1}{2}x - \frac{1}{8}x^2 + \dots \right\}$	
	RHS = $\left(1 + x + \frac{1}{2}x^2\right)\left(1 - x\right)^{\frac{1}{2}} = \left(1 + x + \frac{1}{2}x^2\right)\left(1 - \frac{1}{2}x - \frac{1}{8}x^2 + \dots\right)$	
	$=1-\frac{1}{2}x-\frac{1}{8}x^2+x-\frac{1}{2}x^2+\frac{1}{2}x^2$ See notes	M1
	$=1+\frac{1}{2}x-\frac{1}{8}x^2$	
	So, LHS = $1 + \frac{1}{2}x - \frac{1}{8}x^2 = \text{RHS}$	A1 *
	1 (,) 1	[6]
	B1 : $(1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$ seen or implied.	
	M1: For Way 4, this M1 mark is dependent on the first B1 mark.	
	Expands $(1+x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,	
	Eg: $1 + \frac{1}{2}x$ or $+\left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2$	
	or expands $(1-x)^{\frac{1}{2}}$ to give any 2 out of 3 terms simplified or un-simplified,	
	Eg: $1 + \left(\frac{1}{2}\right)(-x)$ or $+\left(\frac{1}{2}\right)(-x) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^2$	
	A1: At least one binomial expansion correct (either un-simplified or simplified). (ignore x^3 and A1: Two binomial expansions are correct (either un-simplified or simplified). (ignore x^3 and x^4 M1: For Way 4, this M1 mark is dependent on the first B1 mark.	x ⁴ terms) terms)
	Multiplies out RHS to give 1, exactly two terms in x and exactly three terms in x^2 . A1: Candidate achieves the result on the exam paper. Candidate needs to have correctly process	sed both
	the LHS and RHS of $(1+x)^{\frac{1}{2}} = \left(1+x+\frac{1}{2}x^2\right)(1-x)^{\frac{1}{2}}$.	

Question Number	Scheme	Marks
(a)	$0 \leqslant f(x) \leqslant 10$	B1
(h)	ff(0) = f(5), = 3	(1) B1,B1
(b)		(2)
(c)	$y = \frac{4+3x}{5-x} \Rightarrow y(5-x) = 4+3x$	
	$\Rightarrow 5y - 4 = xy + 3x$	M1
	$\Rightarrow 5y - 4 = x(y+3) \Rightarrow x = \frac{5y - 4}{y+3}$	dM1
	$g^{-1}(x) = \frac{5x - 4}{3 + x}$	A1
		(3)
(d)	$gf(x) = 16 \Rightarrow f(x) = g^{-1}(16) = 4$ oe	M1A1
	$f(x) = 4 \Rightarrow x = 6$	B1
	$f(x) = 4 \Rightarrow 5 - 2.5x = 4 \Rightarrow x = 0.4 \text{ oe}$	M1A1
		(5)
		(11 marks)
Alt 1 to (d)	$gf(x) = 16 \Rightarrow \frac{4 + 3(ax + b)}{5 - (ax + b)} = 16$	M1
	ax + b = x - 2 or 5 - 2.5x	A1
	$\Rightarrow x = 6$	B1
	$\frac{4+3(5-2.5x)}{5-(5-2.5x)} = 16 \Rightarrow x = \dots$	M1
	$\Rightarrow x = 0.4$ oe	A1 (5)

Notes for Question

(a)

B1 Correct range. Allow $0 \le f(x) \le 10$, $0 \le f \le 10$, $0 \le y \le 10$, $0 \le range \le 10$, [0,10]

Allow $f(x) \ge 0$ and $f(x) \le 10$ but not $f(x) \ge 0$ or $f(x) \le 10$

Do Not Allow 0≤x≤10. The inequality must include BOTH ends

(b)

B1 For correct one application of the function at x=0

Possible ways to score this mark are f(0)=5, f(5) $0 \rightarrow 5 \rightarrow ...$

B1: 3 ('3' can score both marks as long as no incorrect working is seen.)

(c)

- M1 For an attempt to make x or a replaced y the subject of the formula. This can be scored for putting y = g(x), multiplying across, expanding and collecting x terms on one side of the equation. Condone slips on the signs
- dM1 Take out a common factor of x (or a replaced y) and divide, to make x subject of formula. Only allow one sign error for this mark
- A1 Correct answer. No need to state the domain. Allow $g^{-1}(x) = \frac{5x-4}{3+x}$ $y = \frac{5x-4}{3+x}$

Accept alternatives such as $y = \frac{4-5x}{-3-x}$ and $y = \frac{5-\frac{4}{x}}{1+\frac{3}{x}}$

(d)

- M1 Stating or implying that $f(x) = g^{-1}(16)$. For example accept $\frac{4+3f(x)}{5-f(x)} = 16 \Rightarrow f(x) = ...$
- A1 Stating f(x) = 4 or implying that solutions are where f(x) = 4
- B1 x = 6 and may be given if there is no working
- M1 Full method to obtain other value from line v = 5 2.5x

 $5-2.5x=4 \Rightarrow x=...$

Alternatively this could be done by similar triangles. Look for $\frac{2}{5} = \frac{2-x}{4}$ (oe) $\Rightarrow x = ...$

A1 0.4 or 2/5

Alt 1 to (d)

M1 Writes gf(x) = 16 with a linear f(x). The order of gf(x) must be correct

Condone invisible brackets. Even accept if there is a modulus sign.

- A1 Uses f(x) = x 2 or f(x) = 5 2.5x in the equation gf(x) = 16
- B1 x = 6 and may be given if there is no working

M1 Attempt at solving $\frac{4+3(5-2.5x)}{5-(5-2.5x)} = 16 \Rightarrow x = \dots$. The bracketing must be correct and there must be

no more than one error in their calculation

A1 $x = 0.4, \frac{2}{5}$ or equivalent

Question Number	Sci	heme	Marks
(a)	$x^{2} + 4xy + y^{2} + 27 = 0$ $\left\{ \frac{\cancel{x}}{\cancel{x}} \times \right\} \underline{2x} + \left(\underline{4y + 4x} \frac{dy}{dx} \right) + 2y$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1 <u>A1</u>
	$2x + 4y + (4x + 2y)\frac{dy}{dx}$	$\frac{v}{c} = 0$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x - 4y}{4x + 2y} \ \left\{ = \right.$	$\frac{-x-2y}{2x+y}$	A1 cso oe
(b)	4x +	2y = 0	(4) M1
	y = -2x	$x = -\frac{1}{2}y$	A1
	$x^{2} + 4x(-2x) + (-2x)^{2} + 27 = 0$	$\left(-\frac{1}{2}y\right)^2 + 4\left(-\frac{1}{2}y\right)y + y^2 + 27 = 0$	M1*
	$-3x^2 + 27 = 0$	$-\frac{3}{4}y^2 + 27 = 0$	
	$x^2 = 9$	$y^2 = 36$	dM1*
	x = -3	y = 6	A1
	When $x = -3$, $y = -2(-3)$	When $y = 6$, $x = -\frac{1}{2}(6)$	ddM1*
	<i>y</i> = 6	x = -3	A1 cso [7]

Notes for Question

(a) M1: Differentiates implicitly to include either
$$4x\frac{dy}{dx}$$
 or $\pm ky\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).

A1: $(x^2) \rightarrow (2x)$ and $(x^2) + 27 = 0 \rightarrow \pm 2y\frac{dy}{dx} = 0$.

Note: If an extra term appears then award A0.

Note: The "=0"can be implied by rearrangement of their equation.

i.e.: $2x + 4y + 4x\frac{dy}{dx} + 2y\frac{dy}{dx}$ leading to $4x\frac{dy}{dx} + 2y\frac{dy}{dx} = -2x - 4y$ will get A1 (implied).

B1: $4y + 4x\frac{dy}{dx}$ or $4\left(y + x\frac{dy}{dx}\right)$ or equivalent

dM1: An attempt to factorise out $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.

i.e. $x + (4x + 2y)\frac{dy}{dx} = x$ or $x + 2(2x + y)\frac{dy}{dx} = x$.

Note: This mark is dependent on the previous method mark being awarded.

A1: For $\frac{-2x - 4y}{4x + 2y}$ or equivalent. Eg: $\frac{+2x + 4y}{-4x - 2y}$ or $\frac{-2(x + 2y)}{4x + 2y}$ or $\frac{-x - 2y}{2x + y}$ cso: If the candidate's solution is not completely correct, then do not give this mark.

- (b) M1: Sets the denominator of their $\frac{dy}{dx}$ equal to zero (or the numerator of their $\frac{dx}{dy}$ equal to zero) oe.
 - A1: Rearranges to give either y = -2x or $x = -\frac{1}{2}y$. (correct solution only).

The first two marks can be implied from later working, i.e. for a correct substitution of either y = -2x into y^2 or for $x = -\frac{1}{2}y$ into 4xy.

- M1*: Substitutes $y = \pm \lambda x$ or or $x = \pm \mu y$ or $y = \pm \lambda x \pm a$ or $x = \pm \mu y \pm b$ ($\lambda \neq 0, \mu \neq 0$) into $x^2 + 4xy + y^2 + 27 = 0$ to form an equation in one variable.
- dM1*: leading to at least either $x^2 = A$, A > 0 or $y^2 = B$, B > 0

Note: This mark is dependent on the previous method mark (M1*) being awarded.

A1: For x = -3 (ignore x = 3) or if y was found first, y = 6 (ignore y = -6) (correct solution only). ddM1* Substitutes their value of x into $y = \pm \lambda x$ to give y = value

or substitutes their value of x into $x^2 + 4xy + y^2 + 27 = 0$ to give y = value.

Alternatively, substitutes their value of y into $x = \pm \mu y$ to give x = value

or substitutes their value of y into $x^2 + 4xy + y^2 + 27 = 0$ to give x =value

Note: This mark is dependent on the two previous method marks (M1* and dM1*) being awarded.

A1: (-3, 6) cso.

Note: If a candidate offers two sets of coordinates without either rejecting the incorrect set or accepting the correct set then award A0. DO NOT APPLY ISW ON THIS OCCASION.

- Note: x = -3 followed later in working by y = 6 is fine for A1.
- Note: y = 6 followed later in working by x = -3 is fine for A1.
- Note: x = -3, 3 followed later in working by y = 6 is A0, unless candidate indicates that they are rejecting x = 3

Note: Candidates who set the numerator of $\frac{dy}{dx}$ equal to 0 (or the denominator of their $\frac{dx}{dy}$ equal to zero) can only achieve a maximum of 3 marks in this part. They can only achieve the 2nd, 3rd and 4th Method marks to give a maximum marking profile of M0A0M1M1A0M1A0. They will usually find (-6, 3) { or even (6, -3) }.

Note: Candidates who set the numerator or the denominator of $\frac{dy}{dx}$ equal to $\pm k$ (usually k = 1) can only achieve a maximum of 3 marks in this part. They can only achieve the 2^{nd} , 3^{rd} and 4^{th} Method marks to give a marking profile of M0A0M1M1A0M1A0.

Special Case: It is possible for a candidate who does not achieve full marks in part (a), (but has a correct denominator for $\frac{dy}{dx}$) to gain all 7 marks in part (b).

Eg: An incorrect part (a) answer of $\frac{dy}{dx} = \frac{2x - 4y}{4x + 2y}$ can lead to a correct (-3, 6) in part (b) and 7 marks.

Question Number	Scheme	Marks
(a)	$2\cos x \cos 50 - 2\sin x \sin 50 = \sin x \cos 40 + \cos x \sin 40$	M1
	$\sin x(\cos 40 + 2\sin 50) = \cos x(2\cos 50 - \sin 40)$	
	$\div\cos x \Rightarrow \tan x(\cos 40 + 2\sin 50) = 2\cos 50 - \sin 40$	M1
	$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50},$ (or numerical answer awrt 0.28)	A1
	States or uses $\cos 50 = \sin 40$ and $\cos 40 = \sin 50$ and so $\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ} *$ cao	A1 *
(b)	Deduces $\tan 2\theta = \frac{1}{3} \tan 40$	M1
	$2\theta = 15.6$ so $\theta = \text{awrt } 7.8(1)$ One answer	A1
	Also $2\theta = 195.6, 375.6, 555.6 \Rightarrow \theta =$	M1
	θ = awrt 7.8, 97.8, 187.8, 277.8 All 4 answers	A1
		(4)
		[8 marks]
Alt 1 (a)	$2\cos x \cos 50 - 2\sin x \sin 50 = \sin x \cos 40 + \cos x \sin 40$	M1
	$2\cos x \sin 40 - 2\sin x \cos 40 = \sin x \cos 40 + \cos x \sin 40$	
	$\div\cos x \Rightarrow 2\sin 40 - 2\tan x \cos 40 = \tan x \cos 40 + \sin 40$	M1
	$\tan x = \frac{\sin 40}{3\cos 40}$ (or numerical answer awrt 0.28), $\Rightarrow \tan x = \frac{1}{3}\tan 40$	A1,A1
Alt 2	$2\cos(x+50) = \sin(x+40) \Rightarrow 2\sin(40-x) = \sin(x+40)$	
(a)	$2\cos x \sin 40 - 2\sin x \cos 40 = \sin x \cos 40 + \cos x \sin 40$	MI
	$\div \cos x \Rightarrow 2\sin 40 - 2\tan x \cos 40 = \tan x \cos 40 + \sin 40$	M1
	$\tan x = \frac{\sin 40}{3\cos 40}$ (or numerical answer awrt 0.28), $\Rightarrow \tan x = \frac{1}{3}\tan 40$	A1,A1

Notes for Question

(a)

M1 Expand both expressions using cos(x+50) = cos x cos 50 - sin x sin 50 and sin(x+40) = sin x cos 40 + cos x sin 40. Condone a missing bracket on the lhs.

The terms of the expansions must be correct as these are given identities. You may condone a sign error on one of the expressions.

Allow if written separately and not in a connected equation.

M1 Divide by $\cos x$ to reach an equation in $\tan x$.

Below is an example of M1M1 with incorrect sign on left hand side

 $2\cos x \cos 50 + 2\sin x \sin 50 = \sin x \cos 40 + \cos x \sin 40$

 \Rightarrow 2cos 50 + 2tan x sin 50 = tan x cos 40 + sin 40

This is independent of the first mark.

A1
$$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50}$$

Accept for this mark $\tan x = \text{awrt } 0.28...$ as long as M1M1 has been achieved.

A1* States or uses cos50=sin40 and cos40=sin50 leading to showing

$$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50} = \frac{\sin 40}{3\cos 40} = \frac{1}{3}\tan 40$$

This is a given answer and all steps above must be shown. The line above is acceptable.

Do not allow from $\tan x = \text{awrt } 0.28...$

(b)

- M1 For linking part (a) with (b). Award for writing $\tan 2\theta = \frac{1}{3} \tan 40$
- A1 Solves to find one solution of θ which is usually (awrt) 7.8
- M1 Uses the correct method to find at least another value of θ . It must be a full method but can be implied by any correct answer.

Accept
$$\theta = \frac{180 + their\alpha}{2}$$
, $(or) \frac{360 + their\alpha}{2}$, $(or) \frac{540 + their\alpha}{2}$

A1 Obtains all four answers awrt 1dp. θ = 7.8, 97.8, 187.8, 277.8.

Ignore any extra solutions outside the range.

Withhold this mark for extras inside the range.

Condone a different variable. Accept x = 7.8, 97.8, 187.8, 277.8

Answers fully given in radians, loses the first A mark.

Acceptable answers in rads are awrt 0.136, 1.71, 3.28, 4.85

Mixed units can only score the first M 1

Question Number	Scheme	Marks
	$x = 2\sin t$, $y = 1 - \cos 2t$ $\{= 2\sin^2 t\}$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$	
(a)	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	B1
	$\frac{dt}{dt} = \frac{2 \sin 2t}{dt} \frac{dt}{dt} = \frac{4 \cos t \sin t}{dt} = 2 \sin t$ So, $\frac{dy}{dt} = \frac{2 \sin 2t}{2 \cos t} \left\{ = \frac{4 \cos t \sin t}{2 \cos t} = 2 \sin t \right\}$ Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	
	At $t = \frac{\pi}{4} = \frac{dy}{dt} = \frac{2\sin\left(\frac{2\pi}{6}\right)}{\cos^2 t} = 1$ and substitutes $t = \frac{\pi}{6}$ into their $\frac{dy}{dx}$.	M1;
	6 dx $2\cos\left(\frac{\pi}{6}\right)$, Correct value for $\frac{dy}{dx}$ of 1	Al cao cso
(b)	$y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ = $2\sin^2 t$	[4] M1
	So, $y = 2\left(\frac{x}{2}\right)^2$ or $y = \frac{x^2}{2}$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ $y = \frac{x^2}{2}$ or equivalent.	A1 cso isw
	Either $k = 2$ or $-2 \le x \le 2$	B1 [3]
(c)	Range: $0 \leqslant \mathbf{f}(x) \leqslant 2$ or $0 \leqslant y \leqslant 2$ or $0 \leqslant \mathbf{f} \leqslant 2$ See notes	B1 B1 [2]
	Notes for Question	9
(a)	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.	
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute $t = \frac{\pi}{6}$ into their expression f	for $\frac{dy}{dx}$.
	This mark may be implied by their final answer.	u.
	Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (implied).	
	A1: For an answer of 1 by correct solution only.	
	Note: Don't just look at the answer! A number of candidates are finding $\frac{dy}{dx} = 1$ from incorr	ect methods.
	Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$.	
	Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\sin 2t$ leading to $\frac{dy}{dx} = \frac{-2\sin 2t}{2}$	cost
	which after substitution of $t = \frac{\pi}{6}$, yields $\frac{dy}{dx} = 1$	
	Note: It is possible for you to mark part(a), part (b) and part (c) together. Ignore labelling!	

	Notes for Question Continued				
(b)	M1: Hear the	correct double angle formula cos			
(0)		$\cos^2 t - \sin^2 t$ in an attempt to ge			
		in terms of $\sin^2 t$ and $\cos^2 t$. We			
		s $y = \frac{x^2}{2}$ or un-simplified equivalent			
	$y = \frac{2x^2}{4}$	or $y = 2\left(\frac{x}{2}\right)^2$ or $y = 2$	$2\left(1-\left(\frac{x}{2}\right)^2\right)$	or $y = 1 - \frac{4 - x^2}{4} + \frac{x^2}{4}$	
	IMPOR	and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation. IMPORTANT: Please check working as this result can be fluked from an incorrect method. Award A0 if there is a +c added to their answer.			
	B1: Either k	= 2 or a candidate writes down -	$-2 \le x \le 2$. No	te: $-2 \le k \le 2$ unless k stated as 2 is B0.	
(c)		lues of 0 and/or 2 need to be eva			
				le notation. Eg: $f(x) \ge 0$ or $f(x) \le 2$	
	B1: $0 \le f(x)$	$\leqslant 2$ or $0 \leqslant y \leqslant 2$ or $0 \leqslant f \leqslant 2$	2		
	Special Case:	SC: B1B0 for either $0 < f(x) <$	2 or $0 < f < 2$	or 0 < y < 2 or (0, 2)	
	Special Case:	SC: B1B0 for $0 \le x \le 2$.			
	IMPORTAN	T: Note that: Therefore candidate	tes can use eithe	$\mathbf{r} y$ or \mathbf{f} in place of $\mathbf{f}(x)$	
	Examples:	$0 \leqslant x \leqslant 2$ is SC: B1B0	0 < x < 2 is B	0B0	
		$x \ge 0$ is B0B0	$x \le 2$ is B0B	0	
		f(x) > 0 is B0B0	f(x) < 2 is B0	B0	
		x > 0 is B0B0	x < 2 is B0B0)	
		$0 \ge f(x) \ge 2$ is B0B0	$0 < f(x) \leq 2i$	s B1B0	
		$0 \le f(x) < 2$ is B1B0.	$f(x) \ge 0$ is B	1B0	
		$f(x) \leq 2$ is B1B0	$f(x) \ge 0$ and	$f(x) \le 2$ is B1B1. Must state AND {or} \cap	
		$2 \leqslant \mathbf{f}(x) \leqslant 2$ is B0B0	$f(x) \geqslant 0$ or $f(x) \geqslant 0$	$f(x) \leqslant 2$ is B1B0.	
		$ f(x) \leq 2$ is B1B0	$f(x) \ge 2$ is B	0B0	
		$1 \leqslant f(x) \leqslant 2$ is B1B0	1 < f(x) < 2i	s B0B0	
		$0 \leqslant f(x) \leqslant 4$ is B1B0	0 < f(x) < 4 is	s B0B0	
		$0 \leqslant \text{Range} \leqslant 2$ is B1B0	Range is in bet	ween 0 and 2 is B1B0	
		0 < Range < 2 is B0B0.	Range ≥ 0 is		
		Range ≤ 2 is B1B0	Range ≥ 0 an	d Range ≤ 2 is B1B0.	
		[0, 2] is B1B1	(0, 2) is SC B		
		. ,			
Aliter	$\frac{dx}{dt} = 2\cos t$,	$\frac{dy}{dt} = 2\sin 2t$,		So B1, B1.	
(a)	Cat	CII.			
Way 2	At $t = \frac{\pi}{6}$, $\frac{dx}{dt}$	$= 2\cos\left(\frac{\pi}{6}\right) = \sqrt{3} , \frac{dy}{dt} = 2\sin\left(\frac{2\pi}{3}\right)$	$\left(\frac{2\pi}{6}\right) = \sqrt{3}$		
	Hence $\frac{dy}{dx} = 1$			So implied M1, A1.	

	Notes for Question Co	ontinued		
Aliter	1 , dy Correct dis	fferentiation of t	neir Cartesian equation	n. B1ft
Way 3	$y = \frac{1}{2}x^2 \Rightarrow \frac{dy}{dx} = x$ Finds $\frac{dy}{dx} = x$, using the correct Cartesian equation on			y. B1
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = 2\sin\left(\frac{\pi}{6}\right)$	Finds the val	tue of "x" when $t = \frac{\pi}{6}$	5
	At $t = \frac{1}{6}$, $\frac{1}{6} = 2\sin\left(\frac{1}{6}\right)$	and subst	itutes this into their $\frac{dy}{dx}$	M1
	= 1	C	orrect value for $\frac{dy}{dx}$ of	1 A1
Aliter (b)	$y = 1 - \cos 2t = 1 - (2\cos^2 t - 1)$		M1	
Way 2	$y = 2 - 2\cos^2 t \implies \cos^2 t = \frac{2 - y}{2} \implies 1 - \sin^2 t = \frac{2 - y}{2}$			
	$1 - \left(\frac{x}{2}\right)^2 = \frac{2 - y}{2}$		(Must be in the form	y = f(x).
	$y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$		A1	
Aliter (b)	$x = 2\sin t \implies t = \sin^{-1}\left(\frac{x}{2}\right)$			
Way 3	(-1)		o make t the subject ites the result into y.	M1
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$		((x))	A1 oe
Aliter (b)	$y = 1 - \cos 2t \implies \cos 2t = 1 - y \implies t = \frac{1}{2}\cos^{-1}(1 - y)$			
Way 4	So, $x = \pm 2\sin\left(\frac{1}{2}\cos^{-1}(1-y)\right)$		o make t the subject ites the result into y.	M1
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	<i>y</i> = 1	$-\cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	A1 oe
Aliter (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin t = x \implies y = \frac{1}{2}x^2 + c$	$\frac{dy}{dx}$	$= x \Rightarrow y = \frac{1}{2}x^2 + c$	M1
Way 5	Eg: when eg: $t = 0$ (nb: $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$),	Full method	of finding $y = \frac{1}{2}x^2$	A1
	$x = 0, y = 1 - 1 = 0 \Rightarrow c = 0 \Rightarrow y = \frac{1}{2}x^2$		the of t : $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$	AI
	Note: $\frac{dy}{dx} = 2\sin t = x \implies y = \frac{1}{2}x^2$, with no attempt to fin	d c is M1A0.		

Question Number	Scheme	Marks
(a)	$R = \sqrt{(7^2 + 24^2)} = 25$	B1
	$\tan \alpha = \frac{24}{7}, \implies \alpha = \text{awrt } 73.74^{\circ}$	M1A1
(b)	maximum value of $24\sin x + 7\cos x = 25$ so $V_{min} = \frac{21}{25} = (0.84)$	(3) M1A1
		(2)
(c)	Distance $AB = \frac{7}{\sin \theta}$, with $\theta = \alpha$	M1, B1
	So distance = 7.29 m = $\frac{175}{24}$ m	A1
(d)	$R\cos(\theta - \alpha) = \frac{21}{1.68} \Rightarrow \cos(\theta - \alpha) = 0.5$	(3) M1, A1
	$\theta - \alpha = 60 \Longrightarrow \theta =, \theta - \alpha = -60 \Longrightarrow \theta =$	dM1, dM1
	$\theta = \text{awrt } 133.7, 13.7$	A1, A1
		(14 marks)

Notes for Question

(a)

B1 25. Accept 25.0 but not $\sqrt{625}$ or answers that are not exactly 25. Eg 25.0001

M1 For
$$\tan \alpha = \pm \frac{24}{7}$$
, $\tan \alpha = \pm \frac{7}{24}$.

If the value of R is used only accept $\sin \alpha = \pm \frac{24}{R}$, $\cos \alpha = \pm \frac{7}{R}$

A1 Accept answers which round to 73.74 – must be in degrees for this mark

(b)

M1 Calculates
$$V = \frac{21}{their'R'}$$
 NOT - R

A1 Obtains correct answer.
$$V = \frac{21}{25}$$
 Accept 0.84

Do not accept if you see incorrect working- ie from $\cos(\theta - \alpha) = -1$ or the minus just disappearing from a previous line.

Questions involving differentiation are acceptable. To score M1 the candidate would have to differentiate V by the quotient rule (or similar), set V=0 to find θ and then sub this back into V to find its value.

(c)

M1 Uses the trig equation $\sin \theta = \frac{7}{AB}$ with a numerical θ to find AB = ...

- Uses θ = their value of α in a trig calculation involving sin. (sin $\alpha = \frac{AB}{7}$ is condoned)
- A1 Obtains answer $\frac{175}{24}$ or awrt 7.29

(d)

M1 Substitutes V = 1.68 and their answer to part (a) in $V = \frac{21}{24\sin\theta + 7\cos\theta}$ to get an equation

of the form $R\cos(\theta \pm \alpha) = \frac{21}{1.68}$ or $1.68R\cos(\theta \pm \alpha) = 21$ or $\cos(\theta \pm \alpha) = \frac{21}{1.68R}$.

Follow through on their R and α

- A1 Obtains $cos(\theta \pm \alpha) = 0.5$ oe. Follow through on their α . It may be implied by later working.
- dM1 Obtains one value of θ in the range 0 < θ < 150 from inverse cos +their α It is dependent upon the first M being scored.
- dM1 Obtains second angle of θ in the range $0 < \theta < 150$ from inverse cos +their α It is dependent upon the first M being scored.
- A1 one correct answer awrt $\theta = 133.7 \text{ or } 13.7 \text{ 1dp}$
- A1 both correct answers awrt $\theta = 133.7$ and 13.7 1dp.

Extra solutions in the range loses the last A1.

Answers in radians, lose the first time it occurs. Answers must be to 3dp

For your info $\alpha = 1.287$, $\theta_1 = 2.334$, $\theta_2 = 0.240$

Question Number	Scheme	Marks
(a)	$\left\{x = u^2 \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{or} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$	В1
	$\left\{ \int \frac{1}{x(2\sqrt{x} - 1)} \mathrm{d}x \right\} = \int \frac{1}{u^2(2u - 1)} 2u \mathrm{d}u$	M1
	$= \int \frac{2}{u(2u-1)} \mathrm{d}u$	A1 * cso
		[3
(b)	$\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)} \Rightarrow 2 \equiv A(2u-1) + Bu$ $u = 0 \Rightarrow 2 = -A \Rightarrow A = -2$ $u = \frac{1}{2} \Rightarrow 2 = \frac{1}{2}B \Rightarrow B = 4$ See notes	M1 A1
	$u = 0 \implies 2 = -A \implies A = -2$ $u = 1 \implies 2 = 1 \implies B = A$	
	$u = \frac{1}{2} \implies 2 = \frac{1}{2}B \implies B = 4$ So $\int \frac{2}{u(2u-1)} du = \int \frac{-2}{u} + \frac{4}{(2u-1)} du$ Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ to obtain any one of $\pm \lambda \ln u$ or $\pm \mu \ln(2u-1)$	M1
	$= -2 \ln u + 2 \ln(2u - 1)$ At least one term correctly followed through	A1 ft
	$= -2\ln u + 2\ln(2u - 1) -2\ln u + 2\ln(2u - 1).$	A1 cao
	So, $\left[-2\ln u + 2\ln(2u-1)\right]_1^3$	
	Applies limits of 3 and 1 in u or 9 and 1 in x in their integrated function and subtracts the correct way round.	M1
	$= -2\ln 3 + 2\ln 5 - (0)$	
	$=2\ln\left(\frac{5}{3}\right)$	A1 cso cae
		[7 1
	Notes for Question	
(a)	B1 : $\frac{dx}{du} = 2u$ or $dx = 2u du$ or $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ or $du = \frac{dx}{2\sqrt{x}}$	
	M1: A full substitution producing an integral in u only (including the du) (Integral sign not n	
	The candidate needs to deal with the "x", the " $(2\sqrt{x}-1)$ " and the "dx" and converts fr integral term in x to an integral in u. (Remember the integral sign is not necessary for M	
(b)	A1*: leading to the result printed on the question paper (including the du). (Integral sign is n	eeded).
	M1: Writing $\frac{2}{u(2u-1)} \equiv \frac{A}{u} + \frac{B}{(2u-1)}$ or writing $\frac{1}{u(2u-1)} \equiv \frac{P}{u} + \frac{Q}{(2u-1)}$ and a complete	te method fo
	finding the value of at least one of their A or their B (or their P or their Q). A1: Both their $A = -2$ and their $B = 4$. (Or their $P = -1$ and their $Q = 2$ with the multiply	ing factor of
	2 in front of the integral sign). M1: Integrates $\frac{M}{u} + \frac{N}{(2u-1)}$, $M \neq 0$, $N \neq 0$ (i.e. a two term partial fraction) to obtain any	one of
	$ u \qquad (2u-1) $ $ \pm \lambda \ln u \text{ or } \pm \mu \ln(2u-1) \text{ or } \pm \mu \ln\left(u-\frac{1}{2}\right) $	
	$\pm \lambda \ln u$ or $\pm \mu \ln(2u - 1)$ or $\pm \mu \ln(u - \frac{1}{2})$ A1ft: At least one term correctly followed through from their A or from their B (or their P and	their (2)
	A1: At least one term correctly followed through from their A of from their B (of their P and A1: $-2\ln u + 2\ln(2u - 1)$	men Q).
	Notes for Question Continued	

correct way round.

Note: If a candidate just writes $(-2 \ln 3 + 2 \ln(2(3) - 1))$ oe, this is ok for M1.

A1: $2\ln\left(\frac{5}{3}\right)$ correct answer only. (Note: a = 5, b = 3).

Important note: Award M0A0M1A1A0 for a candidate who writes

$$\int \frac{2}{u(2u-1)} du = \int \frac{2}{u} + \frac{2}{(2u-1)} du = 2\ln u + \ln(2u-1)$$

AS EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ AS PARTIAL FRACTIONS IS GIVEN.

Important note: Award M0A0M0A0A0 for a candidate who writes down either

$$\int \frac{2}{u(2u-1)} du = 2 \ln u + 2 \ln(2u-1) \text{ or } \int \frac{2}{u(2u-1)} du = 2 \ln u + \ln(2u-1)$$

WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ as partial fractions.

Important note: Award M1A1M1A1A1 for a candidate who writes down

$$\int \frac{2}{u(2u-1)} \, \mathrm{d}u = -2\ln u + 2\ln(2u-1)$$

WITHOUT ANY EVIDENCE OF WRITING $\frac{2}{u(2u-1)}$ as partial fractions.

Note: In part (b) if they lose the "2" and find $\int \frac{1}{u(2u-1)} du$ we can allow a maximum of

M1A0 M1A1ftA0 M1A0.

Question Number	Scheme	Marks
(a)	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2 \times 3\sec 3y \sec 3y \tan 3y = \left(6\sec^2 3y \tan 3y\right) \qquad \left(\text{oe } \frac{6\sin 3y}{\cos^3 3y}\right)$	M1A1 (2)
(b)	Uses $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$ to obtain $\frac{dy}{dx} = \frac{1}{6\sec^2 3y \tan 3y}$	M1
	$\tan^2 3y = \sec^2 3y - 1 = x - 1$	B1
	Uses $\sec^2 3y = x$ and $\tan^2 3y = \sec^2 3y - 1 = x - 1$ to get $\frac{dy}{dx}$ or $\frac{dx}{dy}$ in just x.	M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{6x(x-1)^{\frac{1}{2}}}$ CSO	A1* (4)
(c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{0 - \left[6(x-1)^{\frac{1}{2}} + 3x(x-1)^{-\frac{1}{2}}\right]}{36x^2(x-1)}$	M1A1
	$\frac{d^2y}{dx^2} = \frac{6-9x}{36x^2(x-1)^{\frac{1}{2}}} = \frac{2-3x}{12x^2(x-1)^{\frac{1}{2}}}$	dM1A1
		(4)
Alt 1		(10 marks)
to (a)	$x = (\cos 3y)^{-2} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = -2(\cos 3y)^{-3} \times -3\sin 3y$	M1A1
Alt 2 to (a)	$x = \sec 3y \times \sec 3y \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \sec 3y \times 3\sec 3y \tan 3y + \sec 3y \times 3\sec 3y \tan 3y$	M1A1
Alt 1 To (c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{6} \left[x^{-1} \left(-\frac{1}{2} \right) (x-1)^{-\frac{3}{2}} + (-1)x^{-2} (x-1)^{-\frac{1}{2}} \right]$	M1A1
	$= \frac{1}{6}x^{-2}(x-1)^{-\frac{3}{2}}[x(-\frac{1}{2}) + (-1)(x-1)]$	dM1
	$= \frac{1}{12}x^{-2}(x-1)^{-\frac{3}{2}}[2-3x]$ oe	A1
		(4)

Notes for Question

(a) M1

Uses the chain rule to get $A \sec 3y \sec 3y \tan 3y = (A \sec^2 3y \tan 3y)$.

There is no need to get the lhs of the expression. Alternatively could use

the chain rule on $(\cos 3y)^{-2} \Rightarrow A(\cos 3y)^{-3} \sin 3y$

or the quotient rule on $\frac{1}{(\cos 3y)^2} \Rightarrow \frac{\pm A \cos 3y \sin 3y}{(\cos 3y)^4}$

A1 $\frac{dx}{dy} = 2 \times 3 \sec 3y \sec 3y \tan 3y$ or equivalent. There is no need to simplify the rhs but

both sides must be correct.

(b)

M1 Uses $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$ to get an expression for $\frac{dy}{dx}$. Follow through on their $\frac{dx}{dy}$

Allow slips on the coefficient but not trig expression.

Writes $\tan^2 3y = \sec^2 3y - 1$ or an equivalent such as $\tan 3y = \sqrt{\sec^2 3y - 1}$ and uses $x = \sec^2 3y$ to obtain either $\tan^2 3y = x - 1$ or $\tan 3y = (x - 1)^{\frac{1}{2}}$

All elements must be present.

Accept
$$\sqrt{x}$$

$$\sqrt{x-1} \cos 3y = \frac{1}{\sqrt{x}} \Rightarrow \tan 3y = \sqrt{x-1}$$

If the differential was in terms of $\sin 3y, \cos 3y$ it is awarded for $\sin 3y = \frac{\sqrt{x-1}}{\sqrt{x}}$

Uses $\sec^2 3y = x$ and $\tan^2 3y = \sec^2 3y - 1 = x - 1$ or equivalent to get $\frac{dy}{dx}$ in

just x. Allow slips on the signs in $\tan^2 3y = \sec^2 3y - 1$.

It may be implied- see below

A1* CSO. This is a given solution and you must be convinced that all steps are shown.

Note that the two method marks may occur the other way around

Eg.
$$\frac{dx}{dy} = 6\sec^2 3y \tan 3y = 6x(x-1)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{6x(x-1)^{\frac{1}{2}}}$$

Scores the 2nd method

Scores the 1st method

The above solution will score M1, B0, M1, A0

Example 1- Scores 0 marks in part (b)

$$\frac{dx}{dy} = 6\sec^2 3y \tan 3y \Rightarrow \frac{dy}{dx} = \frac{1}{6\sec^2 3x \tan 3x} = \frac{1}{6\sec^2 3x \sqrt{\sec^2 3x - 1}} = \frac{1}{6x(x - 1)^{\frac{1}{2}}}$$

Example 2- Scores M1B1M1A0

$$\frac{dx}{dy} = 2\sec^2 3y \tan 3y \Rightarrow \frac{dy}{dx} = \frac{1}{2\sec^2 3y \tan 3y} = \frac{1}{2\sec^2 3y \sqrt{\sec^2 3y - 1}} = \frac{1}{2x(x-1)^{\frac{1}{2}}}$$

(c) Using Quotient and Product Rules

Uses the quotient rule $\frac{vu'-uv'}{v^2}$ with u=1 and $v=6x(x-1)^{\frac{1}{2}}$ and achieving u'=0 and $v'=A(x-1)^{\frac{1}{2}}+Bx(x-1)^{-\frac{1}{2}}$.

If the formulae are quoted, both must be correct. If they are not quoted nor implied by their working allow expressions of the form

$$\frac{d^2y}{dx^2} = \frac{0 - \left[A(x-1)^{\frac{1}{2}} + Bx(x-1)^{-\frac{1}{2}}\right]}{\left(6x(x-1)^{\frac{1}{2}}\right)^2} \quad \text{or} \quad \frac{d^2y}{dx^2} = \frac{0 - A(x-1)^{\frac{1}{2}} \pm Bx(x-1)^{-\frac{1}{2}}}{Cx^2(x-1)}$$

A1 Correct un simplified expression $\frac{d^2y}{dx^2} = \frac{0 - [6(x-1)^{\frac{1}{2}} + 3x(x-1)^{-\frac{1}{2}}]}{36x^2(x-1)}$ oe

dM1 Multiply numerator and denominator by $(x-1)^{\frac{1}{2}}$ producing a linear numerator which is then simplified by collecting like terms.

Alternatively take out a common factor of $(x-1)^{-\frac{1}{2}}$ from the numerator and collect like terms from the linear expression

This is dependent upon the 1st M1 being scored.

A1 Correct simplified expression $\frac{d^2y}{dx^2} = \frac{2-3x}{12x^2(x-1)^{\frac{3}{2}}}$ oe

(c) Using Product and Chain Rules

M1 Writes
$$\frac{dy}{dx} = \frac{1}{6x(x-1)^{\frac{1}{2}}} = Ax^{-1}(x-1)^{-\frac{1}{2}}$$
 and uses the product rule with u or $v = Ax^{-1}$ and

$$v$$
 or $u = (x-1)^{-\frac{1}{2}}$. If any rule is quoted it must be correct.

If the rules are not quoted nor implied then award if you see an expression of the form

$$(x-1)^{-\frac{3}{2}} \times Bx^{-1} \pm C(x-1)^{-\frac{1}{2}} \times x^{-2}$$

A1
$$\frac{d^2 x}{dx^2} = \frac{1}{6} \left[x^{-1} \left(-\frac{1}{2} \right) (x-1)^{-\frac{3}{2}} + (-1) x^{-2} (x-1)^{-\frac{1}{2}} \right]$$

dM1 Factorises out / uses a common denominator of $x^{-2}(x-1)^{-\frac{3}{2}}$ producing a linear factor/numerator which must be simplified by collecting like terms. Need a single fraction.

A1 Correct simplified expression
$$\frac{d^2y}{dx^2} = \frac{1}{12}x^{-2}(x-1)^{-\frac{1}{2}}[2-3x] \quad oe$$

(c) Using Quotient and Chain rules Rules

M1 Uses the quotient rule
$$\frac{vu'-uv'}{v^2}$$
 with $u=(x-1)^{-\frac{1}{2}}$ and $v=6x$ and achieving

$$u' = A(x-1)^{-\frac{3}{2}}$$
 and $v' = B$.

If the formulae is quoted, it must be correct. If it is not quoted nor implied by their working allow an expression of the form

$$\frac{d^{2}y}{dx^{2}} = \frac{Cx(x-1)^{-\frac{1}{2}} - D(x-1)^{-\frac{1}{2}}}{Ex^{2}}$$

A1 Correct un simplified expression
$$\frac{d^2 \sqrt{x}}{dx^2} = \frac{6x \times -\frac{1}{2}(x-1)^{-\frac{2}{2}} - (x-1)^{-\frac{1}{2}} \times 6}{(6x)^2}$$

dM1 Multiply numerator and denominator by $(x-1)^{\frac{3}{2}}$ producing a linear numerator which is then simplified by collecting like terms.

Alternatively take out a common factor of $(x-1)^{-\frac{3}{2}}$ from the numerator and collect like terms from the linear expression

This is dependent upon the 1st M1 being scored.

A1 Correct simplified expression
$$\frac{d^2y}{dx^2} = \frac{2-3x}{12x^2(x-1)^{\frac{3}{2}}}$$
 oe $\frac{d^2y}{dx^2} = \frac{(2-3x)x^{-2}(x-1)^{-\frac{3}{2}}}{12}$

(c) Using just the chain rule

M1 Writes
$$\frac{dy}{dx} = \frac{1}{6x(x-1)^{\frac{1}{2}}} = \frac{1}{(36x^3 - 36x^2)^{\frac{1}{2}}} = (36x^3 - 36x^2)^{-\frac{1}{2}}$$
 and proceeds by the chain rule to

$$A(36x^3-36x^2)^{-\frac{3}{2}}(Bx^2-Cx)$$
.

Question Number	Scheme		Marl	ks		
	$\frac{d\theta}{dt} = \lambda (120 - \theta), \theta \le 100$ $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \text{or } \int \frac{1}{\lambda (120 - \theta)} d\theta = \int dt$					
(a)				B1		
	$-\ln(120 - \theta)$; = $\lambda t + c$ or	$-\frac{1}{\lambda}\ln(120-\theta); = t +$	С	See notes	M1 A1; M1 A1	,
	$\{t = 0, \theta = 20 \Rightarrow\} -\ln(120 - 20) =$	$=\lambda(0)+c$		See notes	M1	
	$c = -\ln 100 \Rightarrow -\ln (120 - \theta) = \lambda t$	- ln100				
	then either	or				
	$-\lambda t = \ln(120 - \theta) - \ln 100$	$\lambda t = \ln 100 - \ln (120$	$-\theta$)			
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln \left(\frac{100}{120 - \theta} \right)$				
	$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$			dddM1	
	$100e^{-\lambda t} = 120 - \theta$	$(120 - \theta)e^{\lambda t} = 100$				
	100e = 120 - 0	\Rightarrow 120- θ = 100e ⁻⁷	ù		A1 *	
	leading to $\theta = 120 - 120$	100 e ^{−λt}			•••	
(b)	$\{\lambda = 0.01, \theta = 100 \Rightarrow\}$ $100 = 120$) – 100 e ^{-0.01r}			M1	[8]
	$\Rightarrow 100e^{-0.01r} = 120 - 100 \Rightarrow -0.01$	$1t = \ln\left(\frac{120 - 100}{100}\right)$		ect order of operations by $m 100 = 120 - 100e^{-0.01r}$		
	$t = \frac{1}{-0.01} \ln \left(\frac{120 - 100}{100} \right)$		to g	ive $t =$ and $t = A \ln B$, where $B > 0$	dM1	
	$\left\{ t = \frac{1}{-0.01} \ln \left(\frac{1}{5} \right) = 100 \ln 5 \right\}$					
	t = 160.94379 = 161 (s) (nearest	second)		awrt 161	A1	
						[3] 11

(a) B1: Separates variables as shown. $d\theta$ and dr should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs. Either M1: $\int \frac{1}{120-\theta} d\theta \to \pm A \ln(120-\theta)$ A1: $\int \frac{1}{120-\theta} d\theta \to -\ln(120-\theta)$ M1: $\int \lambda dt \to \lambda t$ A1: $\int \lambda dt \to \lambda t$ A1: $\int \lambda dt \to \lambda t$ A1: $\int \lambda dt \to \lambda t + c$ IMPORTANT: $+ c$ can be on either side of their equation for the 2^{nd} A1 mark. M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated or changed equation containing c (or A or $\ln A$). Note that this mark can be implied by the correct value of c . {Note that $-\ln 100 = -4.60517$ }. dddM1: Uses their value of c which must be a \ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either: (1): $e^{-\lambda t} = \frac{120-\theta}{100} \Rightarrow 100e^{-\lambda t} = 120-\theta \Rightarrow \theta = 120-100e^{-\lambda t}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \to -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $t = 100 - 100e^{-0.00t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the $t = 100$ move incorrect units). Alier: $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + c$ $t = 100 - \theta = \lambda t + $		Notes for Question		
implied by later working. Ignore the integral signs. Either M1: $\int \frac{1}{120-\theta} d\theta \rightarrow \pm A \ln(120-\theta)$ A1: $\int \frac{1}{120-\theta} d\theta \rightarrow \pm A \ln(120-\theta)$ A1: $\int \frac{1}{120-\theta} d\theta \rightarrow -\ln(120-\theta)$ A1: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta)$ A2: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta)$ A3: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta)$ A1: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta)$ A2: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta)$ A3: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta)$ A3: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A4: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A3: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A4: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A3: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A4: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A5: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A6: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A7: This mark can be implied by subsequent working. A1: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A1: This mark can be implied by subsequent working. A1: $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda(120-\theta)} d\theta$ A1: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A2: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A3: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A4: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A5: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A6: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A6: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A7: $\int \frac{1}{\lambda(120-\theta)} d\theta$ A8: $\int $	(a)		mark can be	
$ \begin{aligned} \mathbf{MI:} & \int \frac{1}{120-\theta} \mathrm{d}\theta \to \pm A \ln(120-\theta) \\ \mathbf{AI:} & \int \frac{1}{120-\theta} \mathrm{d}\theta \to -\ln(120-\theta) \\ \mathbf{MI:} & \int \frac{1}{120-\theta} \mathrm{d}\theta \to -\ln(120-\theta) \\ \mathbf{MI:} & \int \lambda \mathrm{d}t \to \lambda t \\ \mathbf{AI:} & \int \lambda \mathrm{d}t \to \lambda t \\ \mathbf{AI:} & \int \lambda \mathrm{d}t \to \lambda t \\ \mathbf{AI:} & \int \lambda \mathrm{d}t \to \lambda t + c \\ \mathbf{IMPORTANT:} & + c \text{ can be on either side of their equation for the } 2^{\pm k} \mathrm{Al \ mark}. \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AND} \theta = 20 \\ \mathbf{MI:} & \text{Substitutes } t = 0 \mathrm{AL} \mathrm{MI:} MI:$				
A1: $\int \frac{1}{120-\theta} d\theta \rightarrow -\ln(120-\theta)$ $\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120-\theta) \text{ or } -\frac{1}{\lambda} \ln(120\lambda-\lambda\theta),$ M1: $\int \lambda dr \rightarrow \lambda t$ A1: $\int \lambda dr \rightarrow \lambda t$ A2: $\int \Delta dr \rightarrow \lambda t$ A3: $\int \Delta dr \rightarrow \lambda t$ A4: $\int \Delta dr \rightarrow \lambda t$ A5: $\int \Delta dr \rightarrow \lambda t$ A6: $\int \Delta dr \rightarrow \lambda t$ A7: $\int \Delta dr \rightarrow \lambda t$ A8: $\int \Delta dr \rightarrow \lambda t$ A9: $\int \Delta dr \rightarrow \lambda t$ A1: $\int \Delta dr \rightarrow \lambda t$ A2: $\int \Delta dr \rightarrow \lambda t$ A3: $\int \Delta dr \rightarrow \lambda t$ A4: $\int \Delta dr \rightarrow \lambda t$ A5: $\int \Delta dr \rightarrow \lambda t$ A6: $\int \Delta dr \rightarrow \lambda t$ A7: $\int \Delta dr \rightarrow \lambda t$ A7: $\int \Delta dr \rightarrow \lambda t$ A8: $\int \Delta dr \rightarrow \Delta t$ A9: $\partial \Delta dr \rightarrow \Delta t$ A1: $\partial \Delta dr \rightarrow \Delta t$ A				
MI: $\int \lambda dt \to \lambda t$		M1: $\int \frac{1}{120-\theta} d\theta \rightarrow \pm A \ln(120-\theta) \left[\int \frac{1}{\lambda(120-\theta)} d\theta \rightarrow \pm A \ln(120-\theta), A \text{ is a constant } d\theta \right]$	nstant.	
A1: $\int \lambda dt \to \lambda t + c$ or $\int 1 dt \to t + c$ The $+ c$ can appear on either side of the equation. IMPORTANT: $+ c$ can be on either side of their equation for the 2^{nd} A1 mark. M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated or changed equation containing c (or A or $\ln A$). Note that this mark can be implied by the correct value of c . {Note that $-\ln 100 = -4.60517$ }. dddM1: Uses their value of c which must be a $\ln t$ term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either: (1): $e^{-\lambda t} = \frac{120 - \theta}{100} \Rightarrow 100e^{-\lambda t} = 120 - \theta \Rightarrow \theta = 120 - 100e^{-\lambda t}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda \theta)} d\theta \to -\frac{1}{\lambda} \ln(120\lambda - \lambda \theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0\theta t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{nd} Method mark being awarded in part (b). A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). B1 Aliter (a) Way 2 $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$		•	$(120\lambda - \lambda\theta)$,	
IMPORTANT: $+c$ can be on either side of their equation for the 2^{nd} A1 mark. M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated or changed equation containing c (or A or $\ln A$). Note that this mark can be implied by the correct value of c . {Note that $-\ln 100 = -4.60517$ }. dddM1: Uses their value of c which must be a $\ln t$ term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either: (1): $e^{-tt} = \frac{120 - \theta}{100} \Rightarrow 100e^{-tt} = 120 - \theta \Rightarrow \theta = 120 - 100e^{-tt}$ or (2): $e^{tt} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{tt} = 100 \Rightarrow 120 - \theta = 100e^{-tt} \Rightarrow \theta = 120 - 100e^{-tt}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.00t}$ to $t =$ Note: that the 2^{ndt} Method mark is dependent on the 1^{nt} Method mark being awarded in part (b). Aliter (a) Way 2 $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta)$		M1: $\int \lambda dt \to \lambda t$ $\int 1 dt \to t$		
MI: Substitutes $t = 0$ AND $\theta = 20$ in an integrated or changed equation containing c (or A or $\ln A$). Note that this mark can be implied by the correct value of c . { Note that $-\ln 100 = -4.60517$ }. dddMI: Uses their value of c which must be a $\ln t$ term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either: $(1): e^{-bt} = \frac{120 - \theta}{100} \Rightarrow 100e^{-bt} = 120 - \theta \Rightarrow \theta = 120 - 100e^{-bt}$ or $(2): e^{bt} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{bt} = 100 \Rightarrow 120 - \theta = 100e^{-bt} \Rightarrow \theta = 120 - 100e^{-bt}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) MI: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dMI: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-00t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{nd} Method mark being awarded in part (b). Ali: awart 161 or "awart" 2 minutes 41 seconds. (Ignore incorrect units). B1 $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda $			f the equation.	
Note that this mark can be implied by the correct value of c . { Note that $-\ln 100 = -4.60517$ } $\frac{1}{120}$		IMPORTANT: $+c$ can be on either side of their equation for the 2^{nd} A1 mark.		
dddM1: Uses their value of c which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either: $(1): e^{-\lambda t} = \frac{120 - \theta}{100} \Rightarrow 100e^{-\lambda t} = 120 - \theta \Rightarrow \theta = 120 - 100e^{-\lambda t}$ or $(2): e^{\lambda t} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{\lambda t} = 100 \Rightarrow 120 - \theta = 100e^{-\lambda t} \Rightarrow \theta = 120 - 100e^{-\lambda t}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda \theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda \theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-00t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{nt} Method mark being awarded in part (b). A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). B1 $\frac{Aliter}{(a)}$ (a) $\frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = $		M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated or changed equation containing c (or A	or $\ln A$).	
logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in the candidate's working. Do not accept huge leaps in working at the end. So a minimum of either: (1): $e^{-tt} = \frac{120 - \theta}{100} \Rightarrow 100e^{-tt} = 120 - \theta \Rightarrow \theta = 120 - 100e^{-tt}$ or (2): $e^{tt} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{tt} = 100 \Rightarrow 120 - \theta = 100e^{-tt} \Rightarrow \theta = 120 - 100e^{-tt}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{nd} Method mark being awarded in part (b). A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). B1 Aliter (a) Way 2 $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = -\lambda t + c$ $120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow \}$ $20 = 120 - Ae^0$ $A = 120 - 20 = 100$				
or (2): $e^{\lambda t} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{\lambda t} = 100 \Rightarrow 120 - \theta = 100e^{-\lambda t} \Rightarrow \theta = 120 - 100e^{-\lambda t}$ is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{nd} Method mark being awarded in part (b). Alt: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). B1 -In($120 - \theta$) = $\lambda t + c$ In(1		logarithms. Note: This mark is dependent on all three previous method marks being awarded. A1*: This is a given answer. All previous marks must have been scored and there must not be any errors in		
is required for A1. Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100 e^{-0.01t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{nt} Method mark being awarded in part (b). A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). Aliter (a) Way 2 $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \implies \} \ 20 = 120 - Ae^0$ M1 M1 M1 M1 M1 M1		(1): $e^{-\lambda t} = \frac{120 - \theta}{100} \Rightarrow 100 e^{-\lambda t} = 120 - \theta \Rightarrow \theta = 120 - 100 e^{-\lambda t}$		
Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a). (b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in part (b). A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). B1 $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^0$ $A = 120 - 20 = 100$ M1 M1		or (2): $e^{\lambda t} = \frac{100}{120 - \theta} \Rightarrow (120 - \theta)e^{\lambda t} = 100 \Rightarrow 120 - \theta = 100e^{-\lambda t} \Rightarrow \theta = 120 - 100e^{-\lambda t}$		
(b) M1: Substitutes $\lambda = 0.01$ and $\theta = 100$ into the printed equation or one of their earlier equations connecting θ and t . This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in part (b). Al: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). Aliter (a) Way 2 $ \int \frac{1}{120 - \theta} d\theta = \int \lambda dt $ B1 $ -\ln(120 - \theta) = \lambda t + c $ $ \ln(120 - \theta) = \lambda t + c $ $ \ln(120 - \theta) = \lambda t + c $ $ \ln(120 - \theta) = -\lambda t + c $ $ 120 - \theta = Ae^{-\lambda t} $ $ \theta = 120 - Ae^{-\lambda t} $ $ \{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^0 $ $ A = 120 - 20 = 100 $ M1 M1		is required for A1.		
$\theta \text{ and } t. \text{This mark can be implied by subsequent working.}$ $d\mathbf{M1}: \text{Candidate uses correct order of operations by moving from } 100 = 120 - 100 \mathrm{e}^{-0.01 t} \text{ to } t = \dots$ $\text{Note: that the } 2^{\mathrm{nd}} \text{ Method mark is dependent on the } 1^{\mathrm{st}} \text{ Method mark being awarded in part (b)}.$ $A1: \text{awrt } 161 \text{ or "awrt" } 2 \text{ minutes } 41 \text{ seconds. (Ignore incorrect units)}.$ $B1$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = \lambda t + c$ $120 - \theta = A \mathrm{e}^{-\lambda t}$ $\theta = 120 - A \mathrm{e}^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} \ 20 = 120 - A \mathrm{e}^{0}$ $A = 120 - 20 = 100$		Note: $\int \frac{1}{(120\lambda - \lambda\theta)} d\theta \rightarrow -\frac{1}{\lambda} \ln(120\lambda - \lambda\theta)$ is ok for the first M1A1 in part (a).		
dM1: Candidate uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to $t =$ Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in part (b). A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). Aliter (a) Way 2 $ \int \frac{1}{120 - \theta} d\theta = \int \lambda dt $ B1 $ -\ln(120 - \theta) = \lambda t + c $ See notes $ \ln(120 - \theta) = \lambda t + c $ $ \ln(120 - \theta) = -\lambda t + c $ $ 120 - \theta = Ae^{-\lambda t} $ $ \theta = 120 - Ae^{-\lambda t} $ $ \{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0} $ $ A = 120 - 20 = 100 $ M1 M1	(b)	i i	ns connecting	
Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in part (b). Al: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). $ \begin{array}{ll} Aliter \\ (a) \\ Way 2 \end{array} $ $ \begin{array}{ll} \frac{1}{120-\theta} d\theta = \int \lambda dt \\ -\ln(120-\theta) = \lambda t + c \end{array} $ See notes $ \begin{array}{ll} M1 A1; \\ M1 A1 \end{array} $ $ -\ln(120-\theta) = \lambda t + c $ $ \ln(120-\theta) = -\lambda t + c $ $ 120-\theta = Ae^{-\lambda t} \\ \theta = 120-Ae^{-\lambda t} $ $ \{t = 0, \theta = 20 \Rightarrow\} 20 = 120-Ae^0 $ $ A = 120-20 = 100 $ M1			-	
A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). Aliter (a) Way 2 $ \int \frac{1}{120 - \theta} d\theta = \int \lambda dt $ $ -\ln(120 - \theta) = \lambda t + c $ $ -\ln(120 - \theta) = \lambda t + c $ $ \ln(120 - \theta) = -\lambda t + c $ $ 120 - \theta = Ae^{-\lambda t} $ $ \theta = 120 - Ae^{-\lambda t} $ $ \{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0} $ $ A = 120 - 20 = 100$ M1 M1				
Aliter (a) Way 2 $ \int \frac{1}{120 - \theta} d\theta = \int \lambda dt $ $ -\ln(120 - \theta) = \lambda t + c $ See notes $ \ln(120 - \theta) = \lambda t + c $ $ \ln(120 - \theta) = -\lambda t + c $ $ 120 - \theta = Ae^{-\lambda t} $ $ \theta = 120 - Ae^{-\lambda t} $ $ \{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0} $ $ A = 120 - 20 = 100 $ B1 M1 A1; M1 A1			part (0).	
$-\ln(120 - \theta) = \lambda t + c$ $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = -\lambda t + c$ $120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0}$ $A = 120 - 20 = 100$ M1 A1; M1 A1 M1 A1	(a)	$\int \frac{1}{120 \cdot a} d\theta = \int \lambda dt$	B1	
$\ln(120 - \theta) = -\lambda t + c$ $120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0}$ $A = 120 - 20 = 100$ M1	, 2	$-\ln(120 - \theta) = \lambda t + c$ See notes		
$120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0}$ $A = 120 - 20 = 100$ M1		$-\ln(120 - \theta) = \lambda t + c$		
$120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0}$ $A = 120 - 20 = 100$ M1		$\ln(120 - \theta) = -\lambda t + c$		
$\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^0$ $A = 120 - 20 = 100$ M1		` '		
$\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^0$ $A = 120 - 20 = 100$ M1		$\theta = 120 - Ae^{-\lambda t}$		
			M1	
		A = 120 - 20 = 100		
So, $\theta = 120 - 100e^{-\lambda t}$ dddM1 A1 *		So, $\theta = 120 - 100e^{-\lambda t}$	dddM1 A1*	

(a)	Notes for Question Continued (a) PIMIAIMIAI: Mark as in the original scheme			
(a)	B1M1A1M1A1: Mark as in the original scheme. M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated equation containing their constant of integration which			
	could be c or A . Note that this mark can be implied by the correct value of c or A .			
	dddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation containing			
	their evaluated constant of integration.			
	Note: This mark is dependent on all three previous method marks being Note: $\ln(120 - \theta) = -\lambda t + c$ leading to $120 - \theta = e^{-\lambda t} + e^{c}$ or 120		a dddM0	
	A1*: Same as the original scheme.	-b = e + A, would be	e dddivio.	
	Note: The jump from $\ln(120 - \theta) = -\lambda t + c$ to $120 - \theta = Ae^{-\lambda t}$ w	ith no incorrect working	is condoned	
	in part (a).	an no incorrect working	is condoned	
Aliter				
(a) Way 3	$\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \left\{ \Rightarrow \int \frac{-1}{\theta - 120} d\theta = \int \lambda dt \right\}$		B1	
	$-\ln \theta - 120 = \lambda t + c$	Modulus required	M1 A1	
	$-\ln b-120 = \lambda i + c$	for Ist A1.	M1 A1	
	$\{t = 0, \theta = 20 \Rightarrow\} -\ln 20 - 120 = \lambda(0) + c$	Modulus	M1	
	$\Rightarrow c = -\ln 100 \Rightarrow -\ln \theta - 120 = \lambda t - \ln 100$	not required here!		
	then either or $-\lambda t = \ln \theta - 120 - \ln 100 \qquad \lambda t = \ln 100 - \ln \theta - 120 $			
	$-\lambda t = \ln \left \frac{\theta - 120}{100} \right \qquad \lambda t = \ln \left \frac{100}{\theta - 120} \right $			
	1 200 1			
	As $\theta \leqslant 100$			
	$-\lambda t = \ln \left(\frac{120 - \theta}{100} \right) \qquad \lambda t = \ln \left(\frac{100}{120 - \theta} \right)$	The desertion division of		
	(100) (120 – \theta)	Understanding of modulus is required	dddM1	
	$e^{-\lambda t} = \frac{120 - \theta}{100}$ $e^{\lambda t} = \frac{100}{120 - \theta}$	here!		
	100			
	$100e^{-\lambda t} = 120 - \theta$ $(120 - \theta)e^{\lambda t} = 100$			
	$100e^{-\lambda t} = 120 - \theta$ $\Rightarrow 120 - \theta = 100e^{-\lambda t}$			
	leading to $\theta = 120 - 100 e^{-\lambda t}$		A1 *	
	100000000000000000000000000000000000000		[8]	
	B1: Mark as in the original scheme.			
	M1: Mark as in the original scheme ignoring the modulus.			
	A1: $\int \frac{1}{120-\theta} d\theta \rightarrow -\ln \theta - 120 $. (The modulus is required here).			
	M1A1: Mark as in the original scheme.			
	M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated equation containing their constant of integration which			
	could be c or A. Mark as in the original scheme ignoring the modulus.			
	dddM1: Mark as in the original scheme AND the candidate must demonstrate that they have converted $\ln \theta - 120 $ to $\ln (120 - \theta)$ in their working. Note: This work is dependent on all three previous method			
	$\ln \theta - 120 $ to $\ln (120 - \theta)$ in their working. Note: This mark is dependent on all three previous method			
	marks being awarded. A1: Mark as in the original scheme.			
	A1. Iviaik as in the original scheme.			

	Notes for Question Continued		
Aliter (a)	Use of an integrating factor		
Way 4	$\frac{d\theta}{dt} = \lambda (120 - \theta) \Rightarrow \frac{d\theta}{dt} + \lambda \theta = 120\lambda$		
	$IF = e^{\lambda t}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\lambda t}\theta) = 120\lambda\mathrm{e}^{\lambda t},$	M1A1	
	$e^{\lambda t}\theta = 120\lambda e^{\lambda t} + k$	M1A1	
	$\theta = 120 + Ke^{-\lambda t}$	M1	
	$\{t = 0, \theta = 20 \Rightarrow\} -100 = K$		
	$\theta = 120 - 100e^{-\lambda t}$	M1A1	