Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M14

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 13 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

The curve C has equation $y=2 x^{3}+12 x^{2}-24 x-3$
a Show that C is concave on the interval $[-5,-3]$.
b Find the coordinates of the point of inflection.

Question 2

The first term of a geometric series is 20 and the common ratio is $7 / 8$
The sum to infinity of the series is S_{∞}
(a) Find the value of S_{∞}

The sum to N terms of the series is S_{N}
(b) Find, to 1 decimal place, the value of S_{12}
(c) Find the smallest value of N, for which

$$
\begin{equation*}
S_{\infty}-S_{N}<0.5 \tag{4}
\end{equation*}
$$

Question 3

$$
\mathrm{g}(x)=\frac{x}{x+3}+\frac{3(2 x+1)}{x^{2}+x-6}, \quad x>3
$$

(a) Show that $\mathrm{g}(x)=\frac{x+1}{x-2}, \quad x>3$
(b) Find the range of g .
(c) Find the exact value of a for which $g(a)=g^{-1}(a)$.

Question 4

Given that the binomial expansion of $(1+k x)^{-4}, \quad|k x|<1$, is

$$
1-6 x+A x^{2}+\ldots
$$

(a) find the value of the constant k,
(b) find the value of the constant A, giving your answer in its simplest form.

Question 5

Figure 1
Figure 1 shows part of the graph with equation $y=f(x), x \quad \in \mathbb{R}$.
The graph consists of two line segments that meet at the point $Q(6,-1)$.
The graph crosses the y-axis at the point $P(0,11)$.
Sketch, on separate diagrams, the graphs of
(a) $y=|\mathrm{f}(x)|$
(b) $y=2 f(-x)+3$

On each diagram, show the coordinates of the points corresponding to P and Q.
Given that $f(x)=a|x-b|-1$, where a and b are constants,
(c) state the value of a and the value of b.

Question 6

The curve C has equation $y=\mathrm{f}(x)$ where

$$
f(x)=\frac{4 x+1}{x-2}, \quad x>2
$$

(a) Show that

$$
\begin{equation*}
f^{\prime}(x)=\frac{-9}{(x-2)^{2}} \tag{3}
\end{equation*}
$$

Given that P is a point on C such that $\mathrm{f}^{\prime}(x)=-1$,
(b) find the coordinates of P.

Question 7

The curve C has equation $x=8 y \tan 2 y$
The point P has coordinates $\left(\pi, \frac{\pi}{8}\right)$
(a) Verify that P lies on C.
(b) Find the equation of the tangent to C at P in the form $a y=x+b$, where the constants a and b are to be found in terms of π.

Question 8

(a) Show that

$$
\begin{equation*}
\operatorname{cosec} 2 x+\cot 2 x=\cot x, \quad x \neq 90 n^{\circ}, \quad n \in \mathbb{R} . \tag{5}
\end{equation*}
$$

(b) Hence, or otherwise, solve, for $0 \leq \theta<180^{\circ}$,

$$
\operatorname{cosec}\left(4 \theta+10^{\circ}\right)+\cot \left(4 \theta+10^{\circ}\right)=\sqrt{ } 3
$$

You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)

Question 9

Figure 2
A vase with a circular cross-section is shown in Figure 2. Water is flowing into the vase.
When the depth of the water is $h \mathrm{~cm}$, the volume of water $V \mathrm{~cm}^{3}$ is given by

$$
V=4 \pi h(h+4), \quad 0 \leq h \leq 25
$$

Water flows into the vase at a constant rate of $80 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
Find the rate of change of the depth of the water, in $\mathrm{cm} \mathrm{s}^{-1}$, when $h=6$

Question 10

A rare species of primrose is being studied. The population, P, of primroses at time t years after the study started is modelled by the equation

$$
P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}, \quad t \geq 0, t \quad \in \mathbb{R} .
$$

(a) Calculate the number of primroses at the start of the study.
(b) Find the exact value of t when $P=250$, giving your answer in the form $a \ln (b)$ where a and b are integers.
(c) Find the exact value of $\mathrm{dP} / \mathrm{d} t$ when $t=10$. Give your answer in its simplest form.
(d) Explain why the population of primroses can never be 270

Question 11

Figure 3
Figure 3 shows a sketch of the curve C with parametric equations

$$
x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t, \quad 0 \leq t<2 \pi
$$

(a) Show that

$$
\begin{equation*}
x+y=\sqrt{ } 3 \cos t \tag{3}
\end{equation*}
$$

(b) Show that a cartesian equation of C is

$$
(x+y)^{2}+a y^{2}=b
$$

where a and b are integers to be determined.

Question 12

(a) Express $2 \sin \theta-4 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<\pi / 2$
Give the value of α to 3 decimal places.

$$
H(\theta)=4+5(2 \sin 3 \theta-4 \cos 3 \theta)^{2}
$$

Find
(b) (i) the maximum value of $\mathrm{H}(\theta)$,
(ii) the smallest value of θ, for $0 \leq \theta<\pi$, at which this maximum value occurs.

Find
(c) (i) the minimum value of $\mathrm{H}(\theta)$,
(ii) the largest value of θ, for $0 \leq \theta<\pi$, at which this minimum value occurs.

Question 13

(i) Find

$$
\begin{equation*}
\int_{x} e^{4 x} d x \tag{3}
\end{equation*}
$$

(ii) Find

$$
\begin{equation*}
\int \frac{8}{(2 x-1)^{3}} \mathrm{~d} x, \quad x>1 / 2 \tag{2}
\end{equation*}
$$

Given that $y=\pi / 6$ at $x=0$, solve the differential equation

$$
\begin{equation*}
d y / d x=e^{x} \operatorname{cosec} 2 y \operatorname{cosec} y \tag{7}
\end{equation*}
$$

