Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M15

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 12 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

Use proof by contradiction to show that there is no greatest positive rational number.

Question 2

Figure 1

Figure 1 shows a sketch of a design for a scraper blade. The blade $A O B C D A$ consists of an isosceles triangle COD joined along its equal sides to sectors OBC and ODA of a circle with centre O and radius 8 cm . Angles $A O D$ and $B O C$ are equal. $A O B$ is a straight line and is parallel to the line $D C$. $D C$ has length 7 cm .
(a) Show that the angle COD is 0.906 radians, correct to 3 significant figures.
(b) Find the perimeter of $A O B C D A$, giving your answer to 3 significant figures.
(c) Find the area of $A O B C D A$, giving your answer to 3 significant figures.

Question 3

Given that k is a negative constant and that the function $f(x)$ is defined by

$$
\mathrm{f}(x)=2-\frac{(x-5 k)(x-k)}{x^{2}-3 k x+2 k^{2}}, \quad x \geqslant 0
$$

(a) show that $\mathrm{f}(x)=\frac{x+k}{x-2 k}$
(b) Hence find $\mathrm{f}^{\prime}(x)$, giving your answer in its simplest form.
(c) State, with a reason, whether $\mathrm{f}(x)$ is an increasing or a decreasing function. Justify your answer.

Question 4

(a) Find the binomial expansion of

$$
(4+5 x)^{\frac{1}{2}}, \quad|x|<\frac{4}{5}
$$

in ascending powers of x, up to and including the term in x^{2}.
Give each coefficient in its simplest form.
(b) Find the exact value of $(4+5 x)^{1 / 2}$ when $x=\frac{1}{10}$

Give your answer in the form $k \sqrt{ } 2$, where k is a constant to be determined.
(c) Substitute $x=\frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{ } 2$
Give your answer in the form $\frac{p}{q}$ where p and q are integers.
(Total for question = 8 marks)

Question 5

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
\mathrm{g}(x)=x^{2}(1-x) \mathrm{e}^{-2 x}, \quad x \geqslant 0
$$

(a) Show that $\mathrm{g}^{\prime}(x)=\mathrm{f}(x) \mathrm{e}^{-2 \mathrm{x}}$, where $\mathrm{f}(x)$ is a cubic function to be found.
(b) Hence find the range of g .
(c) State a reason why the function $\mathrm{g}^{-1}(x)$ does not exist.

Question 6

Given that

$$
\mathrm{f}(x)=2 \mathrm{e}^{x}-5, \quad x \in \mathbb{R}
$$

(a) sketch, on separate diagrams, the curve with equation
(i) $y=\mathrm{f}(x)$
(ii) $y=|\mathrm{f}(x)|$

On each diagram, show the coordinates of each point at which the curve meets or cuts the axes.
On each diagram state the equation of the asymptote.
(b) Deduce the set of values of x for which $\mathrm{f}(x)=|\mathrm{f}(x)|$
(c) Find the exact solutions of the equation $|\mathrm{f}(x)|=2$

Question 7

The point P lies on the curve with equation

$$
x=(4 y-\sin 2 y)^{2}
$$

Given that P has (x, y) coordinates $\left(p, \frac{\pi}{2}\right)$, where p is a constant,
(a) find the exact value of p.

The tangent to the curve at P cuts the y-axis at the point A.
(b) Use calculus to find the coordinates of A.

Question 8

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y=4 x-x \mathrm{e}^{\frac{1}{2} x}, x \geqslant 0$ The curve meets the x-axis at the origin O and cuts the x-axis at the point A.
(a) Find, in terms of $\ln 2$, the x coordinate of the point A.
(b) Find

$$
\begin{equation*}
\int x \mathrm{e}^{\frac{1}{2} x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

The finite region R, shown shaded in Figure 1, is bounded by the x-axis and the curve with equation

$$
y=4 x-x \mathrm{e}^{\frac{1}{2} x}, x \geqslant 0
$$

(c) Find, by integration, the exact value for the area of R.

Give your answer in terms of In2
(Total for question = 8 marks)

Question 9

A curve C has parametric equations

$$
x=4 t+3, \quad y=4 t+8+\frac{5}{2 t}, \quad t \neq 0
$$

(a) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C where $t=2$, giving your answer as a fraction in its simplest form.
(b) Show that the cartesian equation of the curve C can be written in the form

$$
y=\frac{x^{2}+a x+b}{x-3}, \quad x \neq 3
$$

where a and b are integers to be determined.

Figure 2
Figure 2 shows a sketch of the curve with equation $y=\sqrt{(3-x)(x+1)}, \quad 0 \leqslant x \leqslant 3$
The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis, and the y-axis.
(a) Use the substitution $x=1+2 \sin \theta$ to show that

$$
\int_{0}^{3} \sqrt{(3-x)(x+1)} \mathrm{d} x=k \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta
$$

where k is a constant to be determined.
(b) Hence find, by integration, the exact area of R.

Question 11

(a) Prove that

$$
\begin{equation*}
\sec 2 A+\tan 2 A \equiv \frac{\cos A+\sin A}{\cos A-\sin A}, \quad A \neq \frac{(2 n+1) \pi}{4}, n \in \mathbb{Z} \tag{5}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant \theta<2 \pi$,

$$
\sec 2 \theta+\tan 2 \theta=\frac{1}{2}
$$

Give your answers to 3 decimal places.

Question 12

(a) Express $\frac{2}{P(P-2)}$ in partial fractions.

A team of biologists is studying a population of a particular species of animal.
The population is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P(P-2) \cos 2 t, t \geqslant 0
$$

where P is the population in thousands, and t is the time measured in years since the start of the study.
Given that $P=3$ when $t=0$,
(b) solve this differential equation to show that

$$
P=\frac{6}{3-\mathrm{e}^{\frac{1}{2} \sin 2 t}}
$$

(c) find the time taken for the population to reach 4000 for the first time.

Give your answer in years to 3 significant figures.

