

Finding Areas using Integration - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q5

Question Number	Scheme	Marks
	$\int x e^{2x} dx = \frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx$ Attempting parts in the right direction	M1 A1
	$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}$	A1
	$\left[\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right]_0^1 = \frac{1}{4} + \frac{1}{4}e^2$	M1 A1
		(5)

Question 2: June 06 Q3

Question Number	Scheme		Marks
	Area Shaded = $\int_{0}^{2\pi} 3\sin(\frac{x}{2}) dx$		
	$= \left[\frac{-3\cos\left(\frac{x}{2}\right)}{\frac{1}{2}}\right]_0^{2\pi}$	Integrating $3\sin\left(\frac{x}{2}\right)$ to give $k\cos\left(\frac{x}{2}\right)$ with $k \neq 1$. Ignore limits.	M1
	$= \left[-6\cos\left(\frac{x}{2}\right) \right]_0^{2\pi}$	$-6\cos\left(\frac{x}{2}\right) \text{ or } \frac{-3}{\frac{1}{2}}\cos\left(\frac{x}{2}\right)$	A1 oe.
	=[-6(-1)]-[-6(1)] = 6 + 6 = 12	<u>12</u>	A1 cao [3]
	(Answer of 12 with no working scores M0A0A0.)		[5]

Question 3: June 06 Q6

Question Number	Scheme		Marks
	$\begin{cases} u = \ln x & \Rightarrow & \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x - 1 & \Rightarrow & v = \frac{x^2}{2} - x \end{cases}$	Use of 'integration by parts' formula in the correct direction	M1
	$I = \left(\frac{x^2}{2} - x\right) ln x - \int \frac{1}{x} \left(\frac{x^2}{2} - x\right) dx$	Correct expression	A1
	$= \left(\frac{x^2}{2} - x\right) \ln x - \underline{\int \left(\frac{x}{2} - 1\right) dx}$	An attempt to multiply at least one term through by $\frac{1}{x}$ and an attempt to	
	$=\left(\frac{x^2}{2} - x\right) \ln x - \left(\frac{x^2}{4} - x\right)$ (+c)	integrate;	M1;
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	correct integration	A1
	$\therefore I = \left[\left(\frac{x^2}{2} - x \right) \ln x - \frac{x^2}{4} + x \right]_1^3$		
	$= \left(\frac{3}{2} \ln 3 - \frac{9}{4} + 3\right) - \left(-\frac{1}{2} \ln 1 - \frac{1}{4} + 1\right)$	Substitutes limits of 3 and 1 and subtracts.	ddM1
	$=\frac{3}{2}\ln 3 + \frac{3}{4} + 0 - \frac{3}{4} = \frac{3}{2}\ln 3$ AG	3 ln3	A1 cso
			[6]

Question 4: Jan 07 Q8

Question Number	Scheme		Marks
(a)	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x+1)^{-\frac{1}{2}}$ or $t^2 = 3x+1 \implies 2t \frac{dt}{dx} = 3$	A(3x + 1) ^{-1/2} or $t \frac{dt}{dx} = A$ $\frac{\frac{3}{2}(3x + 1)^{-1/2}}{2t \frac{dt}{dx}} = 3$	M1
		$\frac{2t\frac{dt}{dx} = 3}{Candidate obtains either}$	71
	so $\frac{dt}{dx} = \frac{3}{2 \cdot (3x+1)^{\frac{1}{2}}} = \frac{3}{2t}$ $\Rightarrow \frac{dx}{dt} = \frac{2t}{3}$	$\frac{dt}{dx}$ or $\frac{dx}{dt}$ in terms of t and moves on to substitute this into I to	dM1
	$\therefore I = \int e^{\sqrt{(3x+1)}} dx = \int e^t \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$	convert an integral wrt x to an integral wrt t.	
	$\therefore I = \int \frac{2}{3} t e^{t} dt$	$\frac{\int \frac{2}{3} t e^t}{}$	A1
	change limits: when $x = 0$, $t = 1$ & when $x = 5$, $t = 4$	changes limits $x \rightarrow t$ so that $0 \rightarrow 1$ and $5 \rightarrow 4$	B1
	Hence $I = \int_{1}^{4} \frac{2}{3} te^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$		[5]
(b)	$\begin{cases} u = t & \Rightarrow \frac{du}{dt} = 1 \\ \frac{dv}{dt} = e^t & \Rightarrow v = e^t \end{cases}$	Let k be any constant for the first three marks of this part.	
	$k \int t e^t dt = k \left(t e^t - \int e^t .1 dt \right)$	Use of 'integration by parts' formula in the correct direction.	M1
		Correct expression with a constant factor k.	A1

Finding Areas using Integration

$= k \left(\underline{te^t - e^t}\right) + c$	A1	
$\therefore \int_{1}^{4} \frac{2}{3} te^{t} dt = \frac{2}{3} \left\{ \left(4e^{4} - e^{4} \right) - \left(e^{1} - e^{1} \right) \right\}$ Substitutes their changed limits into the integrand and subtracts oe.	dM1 o	e
$=\frac{2}{3}(3e^4) = \underline{2e^4} = 109.1963$ either $2e^4$ or awrt 109.2	A1	[5]
	15 mark	(S

Question 5: Jan 08 Q7

Question Number	Scheme		Marks
(a)	$\left[x = \ln(t+2), \ y = \frac{1}{t+1}\right], \Rightarrow \frac{dx}{dt} = \frac{1}{t+2}$	Must state $\frac{dx}{dt} = \frac{1}{t+2}$	B1
	Area(R) = $\int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx$; = $\int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$	Area = $\int \frac{1}{t+1} dx$. Ignore limits. $\int \left(\frac{1}{t+1}\right) \times \left(\frac{1}{t+2}\right) dt$. Ignore limits.	
	Changing limits, when: $x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t = 0$ $x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t = 2$	changes limits $x \rightarrow t$ so that $\ln 2 \rightarrow 0$ and $\ln 4 \rightarrow 2$	B1
	Hence, Area(R) = $\int_0^2 \frac{1}{(t+1)(t+2)} dt$		[4]
(b)	$\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$ $1 = A(t+2) + B(t+1)$	$\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found	M1
	Let $t=-1$, $1=A(1)$ \Rightarrow $\underline{A=1}$ Let $t=-2$, $1=B(-1)$ \Rightarrow $B=-1$	Finds both A and B correctly. Can be implied. (See note below)	A1
	$\int_0^2 \frac{1}{(t+1)(t+2)} dt = \int_0^2 \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$		
	$= \left[\ln(t+1) - \ln(t+2) \right]_0^2$	Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$ Both In terms correctly ft.	dM1 A1√
	$= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	Substitutes both limits of 2 and 0 and subtracts the correct way round.	ddM1
	$= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right)$	$\frac{\ln 3 - \ln 4 + \ln 2}{\text{or}} \text{ or } \frac{\ln \left(\frac{3}{4}\right) - \ln \left(\frac{1}{2}\right)}{\text{or } \ln 3 - \ln 2} \text{ or } \ln \left(\frac{3}{2}\right)}$ (must deal with ln 1)	A1 aef isw
	1 1	1	[6]
Takes ou	t brackets. Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)}$	$+\frac{1}{(t+2)}$ means first M1A0 in (b).	

Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$ means first M1A1 in (b).

Finding Areas using Integration

Question Number	Scheme		Marks
	$x = \ln(t+2), \qquad y = \frac{1}{t+1}$		
(c)	$e^x = t + 2 \implies t = e^x - 2$	Attempt to make $t =$ the subject giving $t = e^x - 2$	M1 A1
	$y = \frac{1}{e^x - 2 + 1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter	$t+1=\frac{1}{y} \implies t=\frac{1}{y}-1 \text{ or } t=\frac{1-y}{y}$	Attempt to make $t =$ the subject	M1
Way 2	$y(t+1) = 1 \implies yt + y = 1 \implies yt = 1 - y \implies t = \frac{1-y}{y}$	Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$	A1
	$x = \ln\left(\frac{1}{y} - 1 + 2\right)$ or $x = \ln\left(\frac{1 - y}{y} + 2\right)$	Eliminates t by substituting in x	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1$		
	$e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	
(d)	Domain: $x > 0$	$\underline{x>0}$ or just >0	
			[1] 15 marks

Finding Areas using Integration

Question Number	Scheme		Mari	ks
Aliter (c) Way 3	$e^x = t + 2 \implies t + 1 = e^x - 1$	Attempt to make $t+1 =$ the subject giving $t+1 = e^x -1$	M1 A1	
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates t by substituting in y giving $y = \frac{1}{e^x - 1}$	dM1 A1	[4]
Aliter (c) Way 4	$t+1=\frac{1}{y} \implies t+2=\frac{1}{y}+1 \text{ or } t+2=\frac{1+y}{y}$	Attempt to make $t+2=$ the subject Either $t+2=\frac{1}{y}+1$ or $t+2=\frac{1+y}{y}$	M1 A1	
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates t by substituting in x	dM1	
	$x = \ln\left(\frac{1}{y} + 1\right)$			
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$			
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1	[4]

Question 6: Jan 09 Q2

Area(R) = $\int_{0}^{2} \frac{3}{\sqrt{(1+4x)}} dx = \int_{0}^{2} 3(1+4x)^{-\frac{1}{2}} dx$ $= \left[\frac{3(1+4x)^{\frac{1}{2}}}{\frac{1}{2} \cdot 4} \right]_{0}^{2}$ $= \left[\frac{3}{2} (1+4x)^{\frac{1}{2}} \right]_{0}^{2}$	Integrating $3(1+4x)^{-\frac{1}{2}}$ to give $\pm k(1+4x)^{\frac{1}{2}}$. Correct integration. Ignore limits.	M1 A1	
$= \left[\frac{3}{2}(1+4x)^{\frac{1}{2}}\right]_0^2$	$\pm k(1+4x)^{\frac{1}{2}}$. Correct integration.		
2 20			
$=\left(\frac{3}{2}\sqrt{9}\right)-\left(\frac{3}{2}(1)\right)$	Substitutes limits of 2 and 0 into a changed function and subtracts the correct way round.	M1	
$= \frac{9}{2} - \frac{3}{2} = \underline{3} \text{ (units)}^2$ Answer of 3 with no working scores	<u>3</u>	<u>A1</u>	(4)
Volume = $\pi \int_{0}^{2} \left(\frac{3}{\sqrt{(1+4x)}} \right)^{2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits and dx .	B1	
$= \left(\pi\right) \int_{0}^{2} \frac{9}{1+4x} \mathrm{d}x$			
$= \left(\pi\right) \left[\frac{9}{4} \ln\left 1 + 4x\right \right]_0^2$	$\pm k \ln 1 + 4x $ $\frac{9}{4} \ln 1 + 4x $	M1 A1	
= $(\pi) \left[\left(\frac{9}{4} \ln 9 \right) - \left(\frac{9}{4} \ln 1 \right) \right]$ Note that $\ln 1$ can be implied as equal to 0.	Substitutes limits of 2 and 0 and subtracts the correct way round.	dM1	
So Volume = $\frac{9}{4}\pi \ln 9$ Note the answer must be a one term exact value. Note, also you can ignore subsequent working here.	$\frac{\frac{9}{4}\pi \ln 9}{\text{Note that}} = \frac{\frac{9}{4}\pi \ln 9}{4\pi \ln 9} + c \text{ (oe.)} \text{ would be}$ awarded the final A0.	A1 oe	isw (5)
Microsoft Section 1	Inswer of 3 with no working scores DAOMOAO.) Solume = $\pi \int_0^2 \left(\frac{3}{\sqrt{(1+4x)}}\right)^2 dx$ = $(\pi) \int_0^2 \frac{9}{1+4x} dx$ = $(\pi) \left[\frac{9}{4} \ln 1+4x \right]_0^2$ = $(\pi) \left[\left(\frac{9}{4} \ln 9\right) - \left(\frac{9}{4} \ln 1\right)\right]$ Solute that $\ln 1$ can be implied as equal to 0. To Volume = $\frac{9}{4} \pi \ln 9$ Solute the answer must be a one term exact value. Solute, also you can ignore subsequent working	Inswer of 3 with no working scores (DAOMOAO.) Solume = $\pi \int_0^2 \left(\frac{3}{\sqrt{(1+4x)}}\right)^2 dx$ Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits and dx . $= (\pi) \int_0^2 \frac{9}{1+4x} dx$ $= (\pi) \left[\left(\frac{9}{4} \ln 1+4x \right) \right]_0^2$ $= (\pi) \left[\left(\frac{9}{4} \ln 9\right) - \left(\frac{9}{4} \ln 1\right) \right]$ Substitutes limits of 2 and 0 and subtracts the correct way round. Solve that $\ln 1$ can be implied as equal to 0. The Volume = $\frac{9}{4}\pi \ln 9$ or $\frac{9}{2}\pi \ln 3$ or $\frac{18}{4}\pi \ln 3$ or $\frac{18}{4}\pi \ln 3$. Note that = $\frac{9}{4}\pi \ln 9 + c$ (oe.) would be awarded the final AO.	Inswer of 3 with no working scores ()AOMOAO.) Solume = $\pi \int_0^2 \left(\frac{3}{\sqrt{(1+4x)}}\right)^2 dx$ Use of $V = \pi \int_0^2 y^2 dx$. Can be implied. Ignore limits and dx . $= (\pi) \int_0^2 \frac{9}{1+4x} dx$ $= (\pi) \left[\frac{9}{4} \ln 1+4x \right]_0^2$ $= (\pi) \left[\left(\frac{9}{4} \ln 9\right) - \left(\frac{9}{4} \ln 1\right)\right]$ Substitutes limits of 2 and 0 and subtracts the correct way round. Substitutes limits of 2 and 0 and subtracts the correct way round. Substitutes limits of 2 and 0 and subtracts the correct way round. Note that $\ln 1$ can be implied as equal to 0. Note that $= \frac{9}{4}\pi \ln 9$ or $\frac{9}{2}\pi \ln 3$ or $\frac{18}{4}\pi \ln 3$ or $\frac{18}{4}\pi \ln 3$ or $\frac{18}{4}\pi \ln 3$ and $\frac{9}{4}\pi \ln 9 + c$ (oe.) would be awarded the final AO.

Question 7: June 09 Q2

-	stion nber	Scheme		Mar	·ks
Q	(a)	1.14805	awrt 1.14805	B1	(1)
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1	
		= (3+2(2.77164+2.12132+1.14805)+0)	0 can be implied	M1	
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft	
		$= \frac{3\pi}{16} \times 15.08202 \dots = 8.884$	cao	A1	(4)
	(c)	$\int 3\cos\left(\frac{x}{3}\right) dx = \frac{3\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1	
		$=9\sin\left(\frac{x}{3}\right)$			
		$A = \left[9\sin\left(\frac{x}{3}\right)\right]_0^{\frac{3\pi}{2}} = 9 - 0 = 9$	cao	A1	(3)
					[8]

Question 8: Jan 10 Q2

Question Number	Scheme		Mark	(S
	(a) 1.386, 2.291	awrt 1.386, 2.291	B1 B1	(2)
	(b) $A \approx \frac{1}{2} \times 0.5$ ()		B1	
	$= \dots (0+2(0.608+1.386+2.291+3.296)$	+4.385)+5.545)	M1	
	= 0.25(0+2(0.608+1.386+2.291+3.296+	+4.385)+5.545) ft their (a)	A1ft	
	= 0.25×29.477 ≈ 7.37	cao	A1	(4)
	(c)(i) $\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} dx$ = $\frac{x^2}{2} \ln x - \int \frac{x}{2} dx$		M1 A1	
	$= \frac{x^2}{2} \ln x - \frac{x^2}{4} (+C)$		M1 A1	
	(ii) $\left[\frac{x^2}{2}\ln x - \frac{x^2}{4}\right]_1^4 = \left(8\ln 4 - 4\right) - \left(-\frac{1}{4}\right)$		M1	
	$= 8 \ln 4 - \frac{15}{4}$			
	$=8(2\ln 2)-\frac{15}{4}$	$\ln 4 = 2 \ln 2$ seen or implied	M1	
	$=\frac{1}{4}(64\ln 2 - 15)$	a = 64, b = -15	A1	(7)
				[13]

Question 9: Jan 11 Q7

Question Number	Scheme		Marks
(a)	$x = 3 \implies y = 0.1847$ $x = 5 \implies y = 0.1667$	awrt awrt or $\frac{1}{6}$	B1 B1 (2)
(b)	$I \approx \frac{1}{2} \Big[0.2 + 0.1667 + 2(0.1847 + 0.1745) \Big]$ ≈ 0.543	0.542 or 0.543	<u>B1</u> M1 A1ft A1 (4)
(c)	$\frac{\mathrm{d}x}{\mathrm{d}u} = 2\left(u - 4\right)$		B1
	$\int \frac{1}{4+\sqrt{(x-1)}} dx = \int \frac{1}{u} \times 2(u-4) du$		M1
	$= \int \left(2 - \frac{8}{u}\right) du$		A1
	$= 2u - 8 \ln u$ $x = 2 \implies u = 5, x = 5 \implies u = 6$		M1 A1 B1
	$[2u - 8 \ln u]_5^6 = (12 - 8 \ln 6) - (10 - 8 \ln 5)$		M1
	$=2+8\ln\left(\frac{5}{6}\right)$		A1
			(8) [14]

Question 10: June 11 Q4

Question Number	Scheme		Marks	
	(a) 0.0333, 1.3596 awrt 0.03	33,	B1 B1	(2)
	(b) Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} [\ldots]$		B1	
	≈ [0+2(0.0333+0.3240+1.3596)+3.9210]		M1	
	≈ 1.30 1.3	Accept	A1	(3)
	(c) $u = x^2 + 2 \implies \frac{du}{dx} = 2x$		B1	
	Area $(R) = \int_0^{\sqrt{2}} x^3 \ln(x^2 + 2) dx$		B1	
	$\int x^3 \ln(x^2 + 2) dx = \int x^2 \ln(x^2 + 2) x dx = \int (u - 2) (\ln u)$	$)\frac{1}{2}du$	M1	
	Hence Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du$		A1	(4)
	(d) $\int (u-2) \ln u du = \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u^2}{2} - 2u\right) \frac{1}{u} du$		-M1 A1	
	$= \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u}{2} - 2\right) du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) (+C)$		-M1 A1	
	Area $(R) = \frac{1}{2} \left[\left(\frac{u^2}{2} - 2u \right) \ln u - \left(\frac{u^2}{4} - 2u \right) \right]_2^4$			
	$= \frac{1}{2} \left[(8-8) \ln 4 - 4 + 8 - ((2-4) \ln 2 - 1 + 4) \right]$		-M1	
	$=\frac{1}{2}(2\ln 2+1)$	$\ln 2 + \frac{1}{2}$	A1	(6 ₁